Skip to main content
Log in

Linkage analysis of a completely ascertained sample of familial schizophrenics and bipolars from Palau, Micronesia

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

We report on linkage analysis of a completely ascertained population of familial psychosis derived from the oceanic nation of Palau. Palau, an archipelago of islands in the Southern Pacific, currently has a population of approximately 23,000 individuals. The peoples of Palau populated these islands recently in human history, approximately 2,000 years ago. As both historical and genetic evidence suggest, the population is far more homogeneous than most other populations undergoing genetic studies, and should therefore prove quite useful for mapping genetic variants having a meaningful impact on susceptibility to psychotic disorders. Moreover, for our study, essentially all on-island schizophrenics (150) and individuals with other psychotic disorders (25) participated. By analysis of narrow (only schizophrenia) and broad (all psychosis) diagnostic schemes, two-point linkage analyses suggest that two regions of the genome harbor genetic variants affecting liability in most families, 3q28 (LOD=3.03) and 17q32.2 (LOD=2.80). Results from individual pedigrees also support 2q37.2, 2p14, and 17p13 as potentially harboring important genetic variants. Most of these regions have been implicated in other genetic studies of psychosis in populations physically quite distant from this Oceanic population, although some (e.g., 3q28) appear to be novel results for schizophrenia linkage analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abreu PC, Greenberg DA, Hodge SE (1999) Direct power comparisons between simple LOD scores and NPL scores for linkage analysis in complex diseases. Am J Hum Genet 65:847–857

    Article  CAS  PubMed  Google Scholar 

  • Badenhop RF, Moses MJ, Scimone A, Mitchell PB, Ewen-White KR, Rosso A, Donald JA, Adams LJ, Schofield PR (2002) A genome screen of 13 bipolar affective disorder pedigrees provides evidence for susceptibility loci on chromosome 3 as well as chromosomes 9, 13 and 19. Mol Psychiatry 7:851–859

    Article  CAS  PubMed  Google Scholar 

  • Badner JA, Gershon ES (2002) Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol Psychiatry 7:405–411

    Article  CAS  PubMed  Google Scholar 

  • Bell G, Karam J, Rutter W (1981) Polymorphic DNA region adjacent to the 5′ end of the human insulin gene. Proc Natl Acad Sci USA 78:5759–5763

    CAS  PubMed  Google Scholar 

  • Bourgain C, Hoffjan S, Nicolae R, Newman D, Steiner L, Walker K, Reynolds R, Ober C, McPeek MS (2003) Novel case-control test in a founder population identifies P-selectin as an atopy-susceptibility locus. Am J Hum Genet 73:612–626

    Article  CAS  PubMed  Google Scholar 

  • Camp NJ, Neuhausen SL, Tiobech J, Polloi A, Coon H, Myles-Worsley M (2001) Genomewide multipoint linkage analysis of seven extended Palauan pedigrees with schizophrenia, by a Markov-Chain Monte Carlo method. Am J Hum Genet 69:1278–1289

    Article  CAS  PubMed  Google Scholar 

  • Cardno AG, Holmans PA, Rees MI, Jones LA, McCarthy GM, Hamshere ML, Williams NM, Norton N, Williams HJ, Fenton I et al (2001) A genomewide linkage study of age at onset in schizophrenia. Am J Med Genet 105:439–445

    Article  CAS  PubMed  Google Scholar 

  • Chen DC, Saarela J, Clark RA, Miettinen T, Chi A, Eichler EE, Peltonen l, Palotie A (2004) Segmental duplications flank the multiple sclerosis locus on chromosome 17q. Genome Res 14:1483–1492

    Article  CAS  PubMed  Google Scholar 

  • Coon H, Myles-Worsley M, Tiobech J, Hoff M, Rosenthal J, Bennett P, Reimherr F, Wender P, Dale P, Polloi A, Byerley W (1999) Evidence for a chromosome 2p13-14 schizophrenia susceptibility locus in families from Palau, Micronesia. Mol Psychiatry 3:521–527

    Article  Google Scholar 

  • Cottingham RW Jr, Idury RM, Schaffer AA (1993) Faster sequential genetic linkage computations. Am J Hum Genet 53:252–563

    PubMed  Google Scholar 

  • Dalgaard P (2002) Introductory statistics with R. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Devlin B, Roeder K, Otto C, Tiobech S, Byerley B (2001) Genome-wide distribution of linkage disequilibrium in the population of Palau and its implications for gene flow in Remote Oceania. Hum Genet 108:521–528

    Article  CAS  PubMed  Google Scholar 

  • Devlin B, Bacanu S-A, Roeder K, Reimherr F, Wender P, Galke B, Novasad D, Chu A, Tcuenco K, Tiobek S et al (2002) Genome-wide multipoint linkage analyses of multiplex schizophrenia pedigrees from the oceanic nation of Palau. Mol Psychiatry 7:689–694

    Article  CAS  PubMed  Google Scholar 

  • Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE, Goldman D, Weinberger DR (2001) Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA 98:6917–6912

    Article  CAS  PubMed  Google Scholar 

  • Ekelund J, Lichtermann D, Hovatta I, Ellonen P, Suvisaari J, Terwilliger JD, Juvonen H, Varilo T, Arajarvi R, Kokko-Sahin ML et al (2000) Genome-wide scan for schizophrenia in the Finnish population: evidence for a locus on chromosome 7q22. Hum Mol Genet 9:1049–1057

    Article  CAS  PubMed  Google Scholar 

  • Fan JB, Zhang CS, Gu NF, Li XW, Sun WW, Wang HY, Feng GY, St Clair D, He L (2005) Catechol- O-methyltransferase gene Val/Met functional polymorphism and risk of schizophrenia: a large-scale association study plus meta-analysis. Biol Psychiatry 57:139–144

    Article  CAS  PubMed  Google Scholar 

  • Gottesman II, Moldin SO (1997) Schizophrenia genetics at the millennium: cautious optimism. Clin Genet 52:404–407

    CAS  PubMed  Google Scholar 

  • Jablensky A (1997) The 100-year epidemiology of schizophrenia. Schizophr Res 28:111–125

    Article  CAS  PubMed  Google Scholar 

  • Kong A, Gudbjartsson DF, Sainz J, Jonsdottir GM, Gudjonsson SA, Richardsson B, Sigurdardottir S, Barnard J, Hallbeck B, Masson G et al (2002) A high-resolution recombination map of the human genome. Nat Genet 31:241–247

    CAS  PubMed  Google Scholar 

  • Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11:241–247

    Article  CAS  PubMed  Google Scholar 

  • Leweke FM, Gerth CW, Koethe D, Klosterkotter J, Ruslanova I, Krivogorsky B, Torrey EF, Yolken RH (2004) Antibodies to infectious agents in individuals with recent onset schizophrenia. Eur Arch Psychiatry Clin Neurosci 254:4–8

    Google Scholar 

  • Lewis CM, Levinson DF, Wise LH, DeLisi LE, Straub RE, Hovatta I, Williams NM, Schwab SG, Pulver AE, Faraone SV et al (2003) Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: Schizophrenia. Am J Hum Genet 73:34–48

    Article  CAS  PubMed  Google Scholar 

  • Li T, Stefansson H, Gudfinnsson E, Cai G, Liu X, Murray RM, Stinthorsdottir V, Januel D, Gudnadottir VG, Petursson H et al (2004) Identification of a novel neuregulin 1 at-risk haplotype in Han schizophrenia Chinese patients, but no association with the Icelandic/Scottish risk haplotype. Mol Psychiatry 9:698–704

    CAS  PubMed  Google Scholar 

  • Lum JK, Cann RL (2000) mtDNA lineage analyses: origins and migrations of Micronesians and Polynesians. Am J Phys Anthropol 113:151–168

    Article  CAS  PubMed  Google Scholar 

  • Myles-Worsley M, Coon H, Tiobech J, Collier J, Dale P, Wender P, Reimherr F, Polloi A, Byerley W (1999) Genetic epidemiological study of schizophrenia in Palau, Micronesia: prevalence and familiality. Am J Med Genet 88:4–10

    Article  CAS  PubMed  Google Scholar 

  • O’Connell JR, Weeks DE (1998) PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet 63:259–266

    Article  CAS  PubMed  Google Scholar 

  • O’Donovan MC, Williams NM, Owen MJ (2003) Recent advances in the genetics of schizophrenia. Hum Mol Genet 12 (Suppl 2):R125–R133

    Article  CAS  PubMed  Google Scholar 

  • Parmentier RJ (1987) The sacred remains, myth, history and polity in Belau. University of Chicago Press, Chicago

    Google Scholar 

  • Risch N, Giuffra L (1992) Model misspecification and multipoint linkage analysis. Hum Hered 42:77–92

    CAS  PubMed  Google Scholar 

  • Schosser A, Fuchs K, Leisch F, Bailer U, Meszaros K, Lenzinger E, Willinger U, Strobl R, Heiden A, Gebhardt C et al (2004) Possible linkage of schizophrenia and bipolar affective disorder to chromosome 3q29; a follow-up. J Psychiatr Res 38:357–364

    Article  PubMed  Google Scholar 

  • Shifman S, Bronstein M, Sternfeld M, Pisante-Shalom A, Lev-Lehman E, Weizman A, Reznik I, Spivak B, Grisaru N, Karp L et al (2002) A highly significant association between a COMT haplotype and schizophrenia. Am J Hum Genet 71:1296–1302

    Article  CAS  PubMed  Google Scholar 

  • Shirts BH, Nimgaonkar V (2004) The genes for schizophrenia: finally a breakthrough? Curr Psychiatry Rep 6:303–312

    PubMed  Google Scholar 

  • Sobel E, Lange K (1996) Descent graphs in pedigree analysis: applications to haplotyping, location scores, and marker sharing statistics. Am J Hum Genet 58:1323–1337

    CAS  PubMed  Google Scholar 

  • Spitzer RL, Endicott J, Robins E (1978) Research diagnostic criteria: rationale and reliability. Arch Gen Psychiatry 35:773–782

    CAS  PubMed  Google Scholar 

  • Stefansson H, Steinthorsdottir V, Thorgeirsson TE, Gulcher JR, Stefansson K (2004) Neuregulin 1 and schizophrenia. Ann Med 36:62–71

    Article  CAS  PubMed  Google Scholar 

  • Straub RE, Jiang Y, MacLean CJ, Ma Y, Webb BT, Myakishev MV, Harris-Kerr C, Wormsley B, Sadek H, Kadambi B et al (2002) Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet 71:337–348

    Article  CAS  PubMed  Google Scholar 

  • Torrey EF, Miller J, Rawlings R, Yolken RH (1997) Seasonality of births in schizophrenia and bipolar disorder: a review of the literature. Schizophr Res 28:1–38

    Article  CAS  PubMed  Google Scholar 

  • Wijsman EM, Rosenthal EA, Hall D, Blundell ML, Sobin C, Heath SC, Williams R, Brownstein MJ, Gogos JA, Karayiorgou M (2003) Genome-wide scan in a large complex pedigree with predominantly male schizophrenics from the island of Kosrae: evidence for linkage to chromosome 2q. Mol Psychiatry 8:695–705

    Article  CAS  PubMed  Google Scholar 

  • Wong AH, Van Tol HH (2003) Schizophrenia: from phenomenology to neurobiology. Neurosci Biobehav Rev 27:269–306

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Research supported by NIH grants MH057881, MH063295, MH063356 and a NARSAD Young Investigator Award (S-AB). We are grateful to the people of Palau for their participation in this study. Genotyping services were provided by the Center for Inherited Disease Research (CIDR). CIDR is fully funded through a federal contract from the National Institutes of Health to The Johns Hopkins University, contract number N01-HG-65403. We thank CIDR for their excellent work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bernie Devlin or William Byerley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klei, L., Bacanu, SA., Myles-Worsley, M. et al. Linkage analysis of a completely ascertained sample of familial schizophrenics and bipolars from Palau, Micronesia. Hum Genet 117, 349–356 (2005). https://doi.org/10.1007/s00439-005-1320-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-005-1320-1

Keywords

Navigation