Skip to main content
Log in

The human T locus and spina bifida risk

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

The transcription factor T is essential for mesoderm formation and axial development during embryogenesis. Embryonic genotype for a single-nucleotide polymorphism in intron 7 of T (TIVS7 T/C) has been associated with the risk of spina bifida in some but not all studies. We developed a novel genotyping assay for the TIVS7 polymorphism using heteroduplex generator methology. This assay was used to genotype spina bifida case—parent trios and the resulting data were analyzed using the transmission disequilibrium test and log-linear analyses. Analyses of these data demonstrated that heterozygous parents transmit the TIVS7-C allele to their offspring with spina bifida significantly more frequently than expected under the assumption of Mendelian inheritance (63 vs 50%, P=0.02). Moreover, these analyses suggest that the TIVS7-C allele acts in a dominant fashion, such that individuals carrying one or more copies of this allele have a 1.6-fold increased risk of spina bifida compared with individuals with zero copies. In silico analysis of the sequence surrounding this polymorphism revealed a potential target site for olfactory neuron-specific factor-1, a transcription factor expressed in the neural tube during development, spanning the polymorphic site. Several other putative, developmentally important and/or environmentally responsive transcription factor-binding sites were also identified close to the TIVS7 polymorphism. The TIVS7 polymorphism or a variant that is in linkage disequilibrium with the TIVS7 polymorphism may, therefore, play a role in T gene expression and influence the risk of spina bifida.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andres V, Nadal-Ginard B, Mahdavi V (1992) Clox, a mammalian homeobox gene related to Drosophila cut, encodes DNA-binding regulatory proteins differentially expressed during development. Development 116:321–334

    CAS  PubMed  Google Scholar 

  • Aufiero B, Neufeld EJ, Orkin SH (1994) Sequence-specific DNA binding of individual cut repeats of the human CCAAT displacement/cut homeodomain protein. Proc Natl Acad Sci USA 91:7757–7761

    CAS  PubMed  Google Scholar 

  • Berry RJ, Li Z (2002) Folic acid alone prevents neural tube defects: evidence from the China study. Epidemiology 13:114–116

    Article  PubMed  Google Scholar 

  • Berry RJ, Li Z, Erickson JD, Li S, Moore CA, Wang H, Mulinare J, Zhao P, Wong LC, Gindler J, Hong S, Correa A (1999) Prevention of neural-tube defects with folic acid in China. N Engl J Med 341:1485–1490

    Article  CAS  PubMed  Google Scholar 

  • Bollage RJ, Siegfried Z, Cebra-Thomas JA, Garvey N, Davison EM, Silver LM (1994) An ancient family of embryonically expressed mouse genes sharing a conserved protein motif with the T locus. Nat Genet 7:383–389

    Article  CAS  PubMed  Google Scholar 

  • Bowman RM, McLone DG, Grant JA, Tomita T, Ito JA (2001) Spina bifida outcome: a 25 year prospective. Pediatr Neurosurg 34:114–120

    Article  CAS  PubMed  Google Scholar 

  • Brown KS, Cook M, Hoess K, Whitehead AS, Mitchell LE (2004) Evidence that the risk of spina bifida is influenced by genetic variation at the NOS3 locus. Birth Defects Res 70:101–106

    Article  CAS  Google Scholar 

  • Carpenter EM (2002) Hox genes and spinal cord development. Dev Neurosci 24:24–34

    Article  CAS  PubMed  Google Scholar 

  • Clements D, Taylor HC, Herrmann BG, Stott D (1996) Distinct regulatory control of the Brachyury gene in axial and non-axial mesoderm suggests separation of mesoderm lineages early in mouse gastrulation. Mech Dev 56:139–149

    Article  CAS  PubMed  Google Scholar 

  • Curtis D, Sham PC (1995) A note on the application of the transmission disequilibrium test when a parent is missing. Am J Hum Genet 56:811–821

    CAS  PubMed  Google Scholar 

  • Czeizel AE, Dudas I (1992) Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N Engl J Med 327:1832–1835

    CAS  PubMed  Google Scholar 

  • Davis JA, Reed RR (1996) Role of Olf-1 and Pax-6 transcription factors in neurodevelopment. J Neurosci 16:5082–5094

    CAS  PubMed  Google Scholar 

  • Denison MS, Nagy SR (2003) Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu Rev Pharmacol Toxicol 43:309–334

    Article  CAS  PubMed  Google Scholar 

  • Doolin MT, Barbaux S, McDonnell M, Hoess K, Whitehead AS, Mitchell LE (2002) Maternal genetic effects, exerted by genes involved in homocysteine remethylation, influence the risk of spina bifida. Am J Hum Genet 71:1222–1226

    Article  CAS  PubMed  Google Scholar 

  • Elwood JM, Little J, Elwood JH (1992) Epidemiology and control of neural tube defects. Oxford University Press, Oxford

    Google Scholar 

  • Finnell RH, Gould A, Spiegelstein O (2003) Pathobiology and genetic of neural tube defects. Epilepsia 44:14–23

    Article  CAS  Google Scholar 

  • Franceschi RT, Xiao G, Jiang D, Gopalakrishnan R, Yang S, Reith E (2003) Multiple signaling pathways converge on the Cbfa1/Runx2 transcription factor to regulate osteoblast differentiation. Connect Tissue Res 44:109–116

    CAS  Google Scholar 

  • Friso S, Choi SW (2002) Gene-nutrient interactions and DNA methylation. J Nutr 132:2382S–2387S

    CAS  PubMed  Google Scholar 

  • Hill CS (2001) TGF-beta signalling pathways in early Xenopus development. Curr Opin Genet Dev 11:533–540

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann A, Czichos S, Kaps C, Bachner D, Mayer H, Kurkalli BG, Zilberman Y, Turgeman G, Pelled G, Gross G, Gazit D (2002) The T-box transcription factor Brachyury mediates cartilage development in mesenchymal stem cell line C3H10T1/2. J Cell Sci 115:769–781

    CAS  PubMed  Google Scholar 

  • Jacob J, Briscoe J (2003) Gli proteins and the control of spinal-cord patterning. EMBO Rep 4:761–765

    Article  CAS  PubMed  Google Scholar 

  • Kirke PN, Molloy AM, Daly LE, Burke H, Weir DG, Scott JM (1993) Maternal plasma folate and vitamin B12 are independent risk factors for neural tube defects. QJM 86:703–708

    CAS  PubMed  Google Scholar 

  • Kwan KM, Kirschner MW (2003) Xbra functions as a switch between cell migration and convergent extension in the Xenopus gastrula. Development 130:1961–1972

    Article  CAS  PubMed  Google Scholar 

  • LaBonne C, Burke B, Whitman M (1995) Role of MAP kinase in mesoderm induction and axial patterning during Xenopus development. Development 121:1475–1486

    CAS  PubMed  Google Scholar 

  • Latchman DS (1999) POU family transcription factors in the nervous system. J Cell Physiol 179:126–133

    Article  CAS  PubMed  Google Scholar 

  • Lehmann OJ, Sowden JC, Carlsson P, Jordan T, Bhattacharya SS (2003) Fox’s in development and disease. Trends Genet 19:339–344

    Article  CAS  PubMed  Google Scholar 

  • Lerchner W, Latinkic BV, Remacle JE, Huylebroeck D, Smith JC (2000) Region-specific activation of the Xenopus brachyury promoter involves active repression in ectoderm and endoderm: a study using transgenic frog embryos. Development 127:2729–2739

    CAS  PubMed  Google Scholar 

  • Locklin RM, Riggs BL, Hicok KC, Horton HF, Byrne MC, Khosla S (2001) Assessment of gene regulation by bone morphogenetic protein 2 in human marrow stromal cells using gene array technology. J Bone Miner Res 16:2192–2204

    CAS  PubMed  Google Scholar 

  • Lucock MD, Daskalakis I, Lumb CH, Schorah CJ, Levene MI (1998) Impaired regeneration of monoglutamyl tetrahydrofolate leads to cellular folate depletion in mothers affected by a spina bifida pregnancy. Mol Genet Metab 65:18–30

    Article  CAS  PubMed  Google Scholar 

  • Martone R, Euskirchen G, Bertone P, Hartman S, Royce TE, Luscombe NM, Rinn JL, Nelson FK, Miller P, Gerstein M, Weissman S, Snyder M (2003) Distribution of NF-kappaB-binding sites across human chromosome 22. Proc Natl Acad Sci USA 100:12247–12252

    Article  CAS  PubMed  Google Scholar 

  • Massague J, Blain SW, Lo RS (2000) TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 103:295–309

    Article  CAS  PubMed  Google Scholar 

  • Mills JL, McPartlin JM, Kirke PN, Lee YJ, Conley MR, Weir DG, Scott JM (1995) Homocysteine metabolism in pregnancies complicated by neural tube defects. Lancet 345:149–151

    Article  CAS  PubMed  Google Scholar 

  • Mimura J, Fujii-Kuriyama Y (2003) Functional role of AhR in the expression of toxic effects by TCDD. Biochim Biophys Acta 1619:263–268

    Article  CAS  PubMed  Google Scholar 

  • Mitchell LE (1997) Genetic epidemiology of birth defects: nonsyndromic cleft lip and neural tube defects. Epidemiol Rev 19:61–68

    CAS  PubMed  Google Scholar 

  • Morrison K, Papapetrou C, Attwood J, Hol F, Lynch SA, Sampath A, Hamel B, Burn J, Sowden J, Stott D, Mariman E, Edwards YH (1996) Genetic mapping of the human homologue (T) of mouse T (Brachyury) and a search for allele association between human T and spina bifida. Hum Mol Genet 5:669–674

    Article  CAS  PubMed  Google Scholar 

  • Morrison K, Papapetrou C, Hol FA, Mariman EC, Lynch SA, Bur NJ, Edwards YH (1998) Susceptibility to spina bifida; an association study of five candidate genes. Ann Hum Genet 62:379–396

    Article  PubMed  Google Scholar 

  • MRC Vitamin Study Research Group (1991) Prevention of neural tube defects. Lancet 338:131–137

    Article  PubMed  Google Scholar 

  • van den Oord EJCG, Vermunt JK (2000) Testing for linkage disequilibrium, maternal effects, and imprinting with (in)complete case-parent triads, by use of the computer program LEM. Am J Hum Genet 66:335–338

    Article  PubMed  Google Scholar 

  • Richter B, Schultealbert AH, Koch MC (2002) Human T and risk for neural tube defects. J Med Genet 39:E14

    Article  CAS  PubMed  Google Scholar 

  • Schacter B, Muir A, Gyves M, Tasin M (1979) HLA-A,B compatibility in parents of offspring with neural-tube defects or couples experiencing involuntary fetal wastage. Lancet 1:796–799

    Article  CAS  PubMed  Google Scholar 

  • Schonemann MD, Ryan AK, Erkman L, McEvilly RJ, Bermingham J, Rosenfeld MG (1998) POU domain factors in neural development. Adv Exp Med Biol 449:39–53

    CAS  PubMed  Google Scholar 

  • Shields DC, Ramsbottom D, Donoghue C, Pinjon E, Kirke PN, Molloy AM, Edwards YH, Mills JL, Mynett-Johnson L, Weir DG, Scott JM, Whitehead AS (2000) Association between historically high frequencies of neural tube defects and the human T homologue of mouse T (Brachyury). Am J Med Genet 92:206–211

    Article  CAS  PubMed  Google Scholar 

  • Showell C, Binder O, Conlon FL (2004) T-box genes in early embryogenesis. Dev Dyn 229:201–218

    Article  CAS  PubMed  Google Scholar 

  • Speer MC, Melvin EC, Viles KD, Bauer KA, Rampersaud E, Drake C, George TM, Enterline DS, Mackey JF, Worley G, Gilbert JR, Nye JS (2002) T locus shows no evidence for linkage disequilibrium or mutation in American Caucasian neural tube defect families. Am J Med Genet 110:215–218

    Article  PubMed  Google Scholar 

  • Spielman RS, McGinnis RE, Ewens WJ (1993) Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 52:506–516

    CAS  PubMed  Google Scholar 

  • Steegers-Theunissen RPM, Boers GHJ, Trijbels FJM, Finkelstein JD, Blom HJ, Thomas CMG, Borm GF, Wouters MGAJ, Eskes TK (1994) Maternal hyperhomocysteinemia: a risk factor for neural tube defects? Metabolism 43:1475–1480

    Article  CAS  PubMed  Google Scholar 

  • Sundaram N, Tao Q, Wylie C, Heasman J (2003) The role of maternal CREB in early embryogenesis of Xenopus laevis. Dev Biol 261:337–352

    Article  CAS  PubMed  Google Scholar 

  • Thiagalingam A, De Bustros A, Borges M, Jasti R, Compton D, Diamond L, Mabry M, Ball DW, Baylin SB, Nelkin BD (1996) RREB-1, a novel zinc finger protein, is involved in the differentiation response to Ras in human medullary thyroid carcinomas. Mol Cell Biol 16:5335–5345

    CAS  PubMed  Google Scholar 

  • Trembath D, Sherbondy AL, Vandyke DC, Shaw GM, Todoroff K, Lammer EJ, Finnell RH, Marker S, Lerner G, Murray JC (1999) Analysis of select folate pathway genes, PAX3, and human T in a Midwestern neural tube defect population. Teratology 59:331–341

    Article  CAS  PubMed  Google Scholar 

  • Vermunt JK (1997) LEM: a general program for the analysis of categorical data. Tilberg University, Tilberg

  • Wacker SA, McNulty CL, Durston AJ (2004) The initiation of Hox gene expression in Xenopus laevis is controlled by Brachyury and BMP-4. Dev Biol 266:123–137

    Article  CAS  PubMed  Google Scholar 

  • Walker AH, Najarian D, White DL, Jaffe JF, Kanetsky PA, Rebbeck TR (1999) Collection of genomic DNA by buccal swabs for polymerase chain reaction-based biomarker assays. Environ Health Perspect 107:517–520

    CAS  PubMed  Google Scholar 

  • Wang SS, Tsai RY, Reed RR (1997) The characterization of the Olf-1/EBF-like HLH transcription factor family: implications in olfactory gene regulation and neuronal development. J Neurosci 17:4149–4158

    CAS  PubMed  Google Scholar 

  • Weinberg CR (1999) Allowing for missing parents in genetic studies of case-parent triads. Am J Hum Genet 64:1186–1193

    Article  CAS  PubMed  Google Scholar 

  • Weinberg CR, Wilcox AJ, Lie RT (1998) A log-linear approach to case-parent-triad data: assessing the effects of disease genes that act either directly or through maternal effects and that may be subject to parental imprinting. Am J Hum Genet 62:969–978

    Article  CAS  PubMed  Google Scholar 

  • Wilcox AJ, Weinberg CR, Lie RT (1998) Distinguishing the effects of maternal and offspring genes through studies of “case-parent triads”. Am J Epidemiol 148:893–901

    CAS  PubMed  Google Scholar 

  • Wong L-YC, Paulozzi LJ (2001) Survival of infants with spina bifida: a population based study, 1979–94. Paediatr Perinat Epidemiol 15:374–378

    Article  CAS  PubMed  Google Scholar 

  • Yeo CY, Chen X, Whitman M (1999) The role of FAST-1 and Smads in transcriptional regulation by activin during early Xenopus embryogenesis. J Biol Chem 274:26584–26590

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Institutes of Health (HD39195; HD39081), the Ethel Brown Foerderer Fund for Excellence and the General Clinical Research Center (M01-RR00240) of The Children’s Hospital of Philadelphia. The authors are grateful to their colleagues in The Spina Bifida Program (Dr. P. Pasquariello and J. Melchionni) and The Center for Fetal Diagnosis and Therapy (Dr. N.S. Adzick, Dr. M.P. Johnson, Dr. R.D. Wilson, L. Howell, S. Miesnik, M. Oxman and S. Kasperski) at The Children’s Hospital of Philadelphia, and in the Spinal Dysfunction Clinic at The A.I. duPont Hospital for Children (Dr. M. McManus and R. Gleeson), and to all of the families that have enrolled in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura E. Mitchell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, L.E., Barbaux, S., Hoess, K. et al. The human T locus and spina bifida risk. Hum Genet 115, 475–482 (2004). https://doi.org/10.1007/s00439-004-1185-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-004-1185-8

Keywords

Navigation