Skip to main content
Log in

Uncovering transcriptional regulation of glycerol metabolism in Aspergilli through genome-wide gene expression data analysis

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Glycerol is catabolized by a wide range of microorganisms including Aspergillus species. To identify the transcriptional regulation of glycerol metabolism in Aspergillus, we analyzed data from triplicate batch fermentations of three different Aspergilli (Aspergillus nidulans, Aspergillus oryzae and Aspergillus niger) with glucose and glycerol as carbon sources. Protein comparisons and cross-analysis with gene expression data of all three species resulted in the identification of 88 genes having a conserved response across the three Aspergilli. A promoter analysis of the up-regulated genes led to the identification of a conserved binding site for a putative regulator to be 5′-TGCGGGGA-3′, a binding site that is similar to the binding site for Adr1 in yeast and humans. We show that this Adr1 consensus binding sequence was over-represented on promoter regions of several genes in A. nidulans, A. oryzae and A. niger. Our transcriptome analysis indicated that genes involved in ethanol, glycerol, fatty acid, amino acids and formate utilization are putatively regulated by Adr1 in Aspergilli as in Saccharomyces cerevisiae and this transcription factor therefore is likely to be cross-species conserved among Saccharomyces and distant Ascomycetes. Transcriptome data were further used to evaluate the high osmolarity glycerol pathway. All the components of this pathway present in yeast have orthologues in the three Aspergilli studied and its gene expression response suggested that this pathway functions as in S. cerevisiae. Our study clearly demonstrates that cross-species evolutionary comparisons among filamentous fungi, using comparative genomics and transcriptomics, are a powerful tool for uncovering regulatory systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Affymetrix: GeneChip expression analysis technical manual, with specific protocols for using the GeneChip hybridization, wash, and stain kit (2007) P/N 702232, Affymetrix, Santa Clara, CA, Revision 2

  • Albertyn J, Hohmann S, Thevelein JM et al (1994) GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic-stress in Saccharomyces cerevisiae, and its expression is regulated by the high osmolarity glycerol response pathway. Mol Cell Biol 14:4135–4144

    CAS  PubMed  Google Scholar 

  • Alexa A, Rahnenfuhrer J, Lengauer T (2006) Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22:1600–1607

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Andersen MR, Vongsangnak W, Panagiotou G et al (2008) A trispecies Aspergillus microarray: comparative transcriptomics of three Aspergillus species. Proc Natl Acad Sci USA 105:4387–4392

    Article  CAS  PubMed  Google Scholar 

  • Appleyard M, McPheat WL, Stark MJR (2000) A novel ‘two-component’ protein containing histidine kinase and response regulator domains required for sporulation in Aspergillus nidulans. Curr Genet 37:364–372

    Article  CAS  PubMed  Google Scholar 

  • Beever RE, Laracy EP (1986) Osmotic adjustment in the filamentous fungus Aspergillus nidulans. J Bacteriol 168:1358–1365

    CAS  PubMed  Google Scholar 

  • Bembom O, Keles S, van der Laan MJ (2007) Supervised detection of conserved motifs in DNA sequences with cosmo. Stat Appl Genet Mol Biol 6:Article 8

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc B Methodol 57:289–300

    Google Scholar 

  • Blomberg A, Adler L (1992) Physiology of osmotolerance in fungi. Adv Microb Physiol 33:145–212

    Article  CAS  PubMed  Google Scholar 

  • Blumenstein A, Vienken K, Tasler R et al (2005) The Aspergillus nidulans phytochrome FphA represses sexual development in red light. Curr Biol 15:1833–1838

    Article  CAS  PubMed  Google Scholar 

  • Carlsen M, Nielsen J (2001) Influence of carbon source on alpha-amylase production by Aspergillus oryzae. Appl Microbiol Biotechnol 57:346–349

    CAS  PubMed  Google Scholar 

  • Cheng C, Kacherovsky N, Dombek KM et al (1994) Identification of potential target genes for Adr1p through characterization of essential nucleotides in UAS1. Mol Cell Biol 14:3842–3852

    CAS  PubMed  Google Scholar 

  • Das HK, Baez ML (2008) ADR1 interacts with a down-stream positive element to activate PS1 transcription. Front Biosci 13:3439–3447

    Article  CAS  PubMed  Google Scholar 

  • David H, Hofmann G, Oliveira A et al (2006) Metabolic network driven analysis of genome-wide transcription data from Aspergillus nidulans. Genome Biol 7(11):R108

    Google Scholar 

  • DeRisi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–686

    Article  CAS  PubMed  Google Scholar 

  • Dudoit S, Gendeman RC, Quackenbush J (2003) Open source software for the analysis of microarray data. Biotechniques (Suppl):45–51

  • Felenbok B, Kelly JM (1996) Regulation of carbon metabolism in mycelia fungi. In: Marzluf G, Brambl R (eds) The Mycota: III: Biochemistry and molecular biology. Springer, Berlin, pp 369–380

    Google Scholar 

  • Fujimura M, Ochiai N, Oshima M et al (2003) Putative homologs of SSK22 MAPKK kinase and PBS2 MAPK kinase of Saccharomyces cerevisiae encoded by os-4 and os-5 genes for osmotic sensitivity and fungicide resistance in Neurospora crassa. Biosci Biotechnol Biochem 67:186–191

    Article  CAS  PubMed  Google Scholar 

  • Furukawa K, Hoshi Y, Maeda T et al (2005) Aspergillus nidulans HOG pathway is activated only by two-component signalling pathway in response to osmotic stress. Mol Microbiol 56:1246–1261

    Article  CAS  PubMed  Google Scholar 

  • Gentleman RC, Carey VJ, Bates DM et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5(10):R80

    Google Scholar 

  • Han KH, Prade RA (2002) Osmotic stress-coupled maintenance of polar growth in Aspergillus nidulans. Mol Microbiol 43:1065–1078

    Article  CAS  PubMed  Google Scholar 

  • Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66(2):300–372

    Article  CAS  PubMed  Google Scholar 

  • Hondmann DHA, Busink R, Witteveen CFB et al (1991) Glycerol catabolism in Aspergillus nidulans. J Gen Microbiol 137:629–636

    CAS  PubMed  Google Scholar 

  • Hynes MJ, Murray SL, Duncan A et al (2006) Regulatory genes controlling fatty acid catabolism and peroxisomal functions in the filamentous fungus Aspergillus nidulans. Eukaryotic Cell 5:794–805

    Article  CAS  PubMed  Google Scholar 

  • Hynes MJ, Murray SL, Khew GS et al (2008) Genetic analysis of the role of peroxisomes in the utilization of acetate and fatty acids in Aspergillus nidulans. Genetics 178:1355–1369

    Article  CAS  PubMed  Google Scholar 

  • Irizarry RA, Hobbs B, Collin F et al (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264

    Article  PubMed  Google Scholar 

  • Kobayashi T, Abe K, Asai K et al (2007) Genomics of Aspergillus oryzae. Biosci Biotechnol Biochem 71:646–670

    Article  CAS  PubMed  Google Scholar 

  • Maeda T, Takekawa M, Saito H (1995) Activation of yeast Pbs2 MAPKK by MAPKKKs of by binding of an SH3-containing osmosensor. Science 269:554–558

    Article  CAS  PubMed  Google Scholar 

  • Maggio-Hall LA, Keller NP (2004) Mitochondrial beta-oxidation in Aspergillus nidulans. Mol Microbiol 54:1173–1185

    Article  CAS  PubMed  Google Scholar 

  • Norbeck J, Pahlman AK, Akhtar N et al (1996) Purification and characterization of two isoenzymes of DL-glycerol-3-phosphatase from Saccharomyces cerevisiae—identification of the corresponding GPP1 and GPP2 genes and evidence for osmotic regulation of Gpp2p expression by the osmosensing mitogen-activated protein kinase signal transduction pathway. J Biol Chem 271:13875–13881

    Article  CAS  PubMed  Google Scholar 

  • Panagiotou G, Andersen MR, Grotkjaer T et al (2008) Systems analysis unfolds the relationship between the phosphoketolase pathway and growth in Aspergillus nidulans. PLoS ONE 3:3847

    Article  Google Scholar 

  • Pedersen H, Beyer M, Nielsen J (2000) Glucoamylase production in batch, chemostat and fed-batch cultivations by an industrial strain of Aspergillus niger. Appl Microbiol Biotechnol 53:272–277

    Article  CAS  PubMed  Google Scholar 

  • Posas F, WurglerMurphy SM, Maeda T et al (1996) Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 ‘‘two-component’’ osmosensor. Cell 86:865–875

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team (2007) A Language and Environment for Statistical Computing

  • Roberts GG, Hudson AP (2006) Transcriptome profiling of Saccharomyces cerevisiae during a transition from fermentative to glycerol-based respiratory growth reveals extensive metabolic and structural remodeling. Mol Genet Genomics 276:170–186

    Article  CAS  PubMed  Google Scholar 

  • Ronnow B, Kielland-Brandt MC (1993) GUT2, a gene for mitochondrial glycerol 3-phosphate dehydrogenase of Saccharomyces cerevisiae. Yeast 9:1121–1130

    Article  CAS  PubMed  Google Scholar 

  • Ruijter GJG, Visser J (1997) Carbon repression in Aspergilli. FEMS Microbiol Lett 151:103–114

    Article  CAS  PubMed  Google Scholar 

  • Schneider TD, Stephens RM (1990) Sequence logos—a new way to display consensus sequences. Nucleic Acids Res 18:6097–6100

    Article  CAS  PubMed  Google Scholar 

  • Shani N, Valle D (1996) A Saccharomyces cerevisiae homolog of the human adrenoleukodystrophy transporter is a heterodimer of two half ATP-binding cassette transporters. Proc Natl Acad Sci USA 93:11901–11906

    Article  CAS  PubMed  Google Scholar 

  • Smyth G (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:Article 3

  • Strauss J, Mach RL, Zeilinger S et al (1995) Cre1, the carbon catabolite repressor protein from Trichoderma reesei. FEBS Lett 376:103–107

    Article  CAS  PubMed  Google Scholar 

  • Suzuki A, Kanamaru K, Azuma N et al (2008) GFP-Tagged expression analysis revealed that some histidine kinases of Aspergillus nidulans show temporally and spatially different expression during the life cycle. Biosci Biotechnol Biochem 72:428–434

    Article  CAS  PubMed  Google Scholar 

  • van Helden J, Andre B, Collado-Vides J (1998) Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies. J Mol Biol 281:827–842

    Article  PubMed  Google Scholar 

  • Visser J, Vanrooijen R, Dijkema C et al (1988) Glycerol uptake mutants of the hyphal fungus Aspergillus nidulans. J Gen Microbiol 134:655–659

    CAS  PubMed  Google Scholar 

  • Vongsangnak W, Olsen P, Hansen K et al (2008) Improved annotation through genome-scale metabolic modeling of Aspergillus oryzae. BMC Genomics 9:14

    Article  Google Scholar 

  • Vongsangnak W, Salazar M, Hansen K et al (2009) Genome-wide analysis of maltose utilization and regulation in aspergilli. Microbiology (in press)

  • Wei HJ, Requena N, Fischer R (2003) The MAPKK kinase SteC regulates conidiophore morphology and is essential for heterokaryon formation and sexual development in the homothallic fungus Aspergillus nidulans. Mol Microbiol 47:1577–1588

    Article  CAS  PubMed  Google Scholar 

  • Witteveen CFB, Visser J (1995) Polyols pools in Aspergillus niger. FEMS Microbiol Lett 134:57–62

    Article  CAS  PubMed  Google Scholar 

  • Witteveen CFB, Vandevondervoort P, Dijkema C et al (1990) Characterization of a glycerol kinase mutant of Aspergillus niger. J Gen Microbiol 136:1299–1305

    CAS  PubMed  Google Scholar 

  • Workman C, Jensen LJ, Jarmer H et al (2002) A new non-linear normalization method for reducing variability in DNA microarray experiments. Genome Biol 3(9)

  • Young ET, Kacherovsky N, Van Riper K (2002) Snf1 protein kinase regulates Adr1 binding to chromatin but not transcription activation. J Biol Chem 277:38095–38103

    Article  CAS  PubMed  Google Scholar 

  • Young ET, Dombek KM, Tachibana C et al (2003) Multiple pathways are co-regulated by the protein kinase Snf1 and the transcription factors Adr1 and Cat8. J Biol Chem 278:26146–26158

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Tina Johansen, Pia Friis and Lene Christiansen at Technical University of Denmark for assistance with the experimental work and Dr. Kim Hansen for supervising the fermentations with A. oryzae, Lone Vuholm and Anne Kejser Jensen at Novozymes for technical assistance. We would like to thank National Council of Research Conacyt-Mexico and Chalmers University of Technology for financial support to MS; Novozymes Bioprocess Academy and Chalmers University of Technology for financial support to WV; Danish Research Council for Technology and Production Sciences and Lundbeck Foundation for financial support to GP and Danish Research Agency for Technology and Production for financial support to MRA. We thank Dr. Gerald Hofmann for revision of the manuscript and good scientific discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Nielsen.

Additional information

Communicated by S. Hohmann.

M. Salazar and W. Vongsangnak contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

438_2009_486_MOESM1_ESM.pdf

A. nidulans differentially expressed genes mapped to metabolic map of A. oryzae resulting from glucose versus glycerol t-test analysis (PDF 3.54 MB)

438_2009_486_MOESM2_ESM.pdf

A. oryzae differentially expressed genes mapped to metabolic map of A. oryzae resulting from glucose versus glycerol t-test analysis (PDF 3.54 MB)

438_2009_486_MOESM3_ESM.pdf

A. niger differentially expressed genes mapped to metabolic map of A. oryzae resulting from glucose versus glycerol t-test analysis (PDF 3.54 MB)

438_2009_486_MOESM4_ESM.pdf

Significant genes differentially expressed and mapped to the metabolic maps of A. niger and A. oryzae. Selected pathways included: central carbon metabolism, TCA cycle, C2 and C3 carbon metabolism and fatty acid metabolism. Complete metabolic maps of A. nidulans, A. oryzae and A. niger, using A. oryzae as a template are included in Supplementary Figs 1, 2 and 3, respectively. The abbreviation of metabolites is described as follows. C2 metabolism: ETH, ethanol; AC, acetate, ACAL, acetaldehyde; ACCOA, acetyl-CoA. C3 metabolism: GL, glycerol; GLYAL, D-glyceraldehyde; GLYN, glycerone; GL3P, sn-glycerol 3-phosphate; T3P2, glycerone phosphate. Pyruvate metabolism: F6P, Beta-D-fructose 6-phosphate; FDP, Beta-D-fructose 1,6-bisphosphate; T3P1, D-glyceraldehyde 3-phosphate; 13PDG, 1,3-Bisphospho-D-glycerate; 3PG, 3-Phospho-D-glycerate 2PG, 2-Phospho-D-glycerate; PEP, phosphoenolpyruvate; PYR, pyruvate; MTHGXL, methylglyoxal; RGT, glutathione; LACAL, D-lactaldehyde; LAC, D-lactate; LGT, (R)-S-lactoylglutathione; LLAC, L-lactate. TCA cycle: OA, oxaloacetate; CIT, citrate; ACO, Cis-aconitate; ICIT, isocitrate AKG, 2-oxoglutarate; SUCCOA, succinyl coenzyme A; SUCC, succinate; FUM, fumarate; MAL, (S)-malate; GABAL, 4-aminobutyraldehyde; GABA, 4-aminobutanoate; GLU, L-glutamate; SUCCSAL, succinate semialdehyde. Fatty acid catabolism: C120COA, dodecanoyl-Coenzyme A; C120CAR, dodecanoyl-carnitine; C12DCOA, dodecanoyl-dehydro-Coenzyme A; C12HCOA, dodecanoyl-Hydroxy-Coenzyme A; C12OCOA, dodecanoyl-oxo-Coenzyme A; C140COA, myristoyl-Coenzyme A; C140CAR, myristoyl-carnitine; C14DCOA, myristoyl-dehydro-Coenzyme A; C14HCOA, myristoyl-Hydroxy-Coenzyme A; C14OCOA, myristoyl-oxo-Coenzyme A; C160COA, hexadecanoyl-Coenzyme A; C160CAR, hexadecanoyl-carnitine; C16DCOA, hexadecanoyl-dehydro-Coenzyme A; C16HCOA, hexadecanoyl-Hydroxy-Coenzyme A; C160COA, hexadecanoyl-Coenzyme A; C180COA, stearoyl-Coenzyme A; C180CAR, octadecanoyl-carnitine; C18DCOA, stearoyl-dehydro-Coenzyme A; C18HCOA, stearoyl-Hydroxy-Coenzyme A; C180COA, Stearoyl-oxo-Coenzyme A. Extracellular metabolites are designated by subscript ‘e’; mitochondrial metabolites by subscript ‘m’ (PDF 90.2 KB)

Supplementary Table 1. (PDF 204 KB)

Supplementary Table 2. (XLS 50 KB)

Supplementary Table 3. (XLS 457 KB)

Supplementary Table 4. (XLS 43.5 KB)

Supplementary Table 5. (PDF 24.6 KB)

Supplementary Table 6. (XLS 34.0 KB)

Supplementary Table 7. (XLS 274 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salazar, M., Vongsangnak, W., Panagiotou, G. et al. Uncovering transcriptional regulation of glycerol metabolism in Aspergilli through genome-wide gene expression data analysis. Mol Genet Genomics 282, 571–586 (2009). https://doi.org/10.1007/s00438-009-0486-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-009-0486-y

Keywords

Navigation