Skip to main content
Log in

Genome-wide identification, expression and chromosomal location of the genes encoding chitinolytic enzymes in Zea mays

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Chitinolytic enzymes are important pathogenesis and stress related proteins. We identified 27 putative genes encoding endochitinases in the maize genome via in silico techniques and four exochitinases. Only seven of the endochitinases and segments of the exochitinases were heretofore known. The endochitinases included members of family 19 chitinases (classes I–IV of PR3, II of PR4) and members of family 18 chitinases (class III of PR8). Some similar enzymes were detected on adjacent regions of the same chromosome, and seem to result from duplication events. Most of the genes expressed were identified from EST libraries from plants exposed to biotic or abiotic stresses but also from libraries from tissues not exposed to stresses. We isolated proteins from seedlings of maize in the presence or absence of the symbiotic root colonizing fungus Trichoderma harzianum strain T22, and analyzed the activity of chitinolytic enzymes using an in-gel activity assay. The activity bands were identified by LC/MS/MS using the database from our in silico study. The identities of the enzymes changed depending on whether or not T22 was present. One activity band of about 95 kDa appeared to be a heterodimer between an exochitinase and any of several different endochitinases. The identity of the endochitinase component appeared to be dependent upon treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baldan B, Guzzo F, Filippini F, Gasparian M, LoSchiavo F, Vitale A, de Vries SC, Mariani P, Terzi M (1997) The secretory nature of the lesion of carrot cell variant ts11, rescuable by endochitinase. Planta 203:381–389

    Article  PubMed  CAS  Google Scholar 

  • Berger S, Menudier A, Julien R, Karamanos Y (1995) Do de-N-glycosylation enzymes have an important role in plant cells? Biochimie 77:751–760

    Article  PubMed  CAS  Google Scholar 

  • Bolar JP, Norelli JL, Wong K-W, Hayes CK, Harman GE, Aldwinckle HS (2000) Expression of endochitinase from Trichoderma harzianum in transgenic apple increases resistance to apple scab and reduces vigor. Phytopathology 90:72–77

    Article  CAS  PubMed  Google Scholar 

  • Bolar JP, Norelli JL, Harman GE, Brown SK, Aldwinckle HS (2001) Synergistic activity of endochitinase and exochitinase from Trichoderma atroviride (T. harzianum) against the pathogenic fungus (Venturia inaequalis) in transgenic apple plants. Trans Res 10:533–543

    Article  CAS  Google Scholar 

  • Bravo JM, Campo S, Murillo I, Coca M, San Segundo B (2003) Fungus- and wound-induced accumulation of mRNA containing a class II chitinase of the pathogenesis-related protein 4 (PR-4) family of maize. Plant Mol Biol 52:745–759

    Article  PubMed  CAS  Google Scholar 

  • Chevalier C, Bourgeois E, Pradet A, Raymond P (1995) Molecular cloning and characterization of 6 cDNAs expressed during glucose starvation in excised maize (Zea mays L.) root tips. Plant Mol Biol 28:473–485

    Article  PubMed  CAS  Google Scholar 

  • Choi SY, Gross KC (1994) N-Acetyl-beta-d-glucosaminidase from “Golden Delicious” apples. Phytochemistry 36:1–6

    Article  CAS  Google Scholar 

  • Didierjean L, Frendo P, Nasser W, Genot G, Marivet J, Burkard G (1996) Heavy-metal-responsive genes in maize: identification and comparison of their expression upon various forms of abiotic stress. Planta 199:1–8

    Article  PubMed  CAS  Google Scholar 

  • Dyachok JV, Wiweger M, Kenne L, von Arnold S (2002) Endogenous nod-factor-like signal molecules promote early somatic embryo development in Norway spruce. Plant Physiol 128:523–533

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Casado G, Collada C, Allona I, Casado R, Pacios LF, Aragoncillo C, Gomez L (1998) Site-directed mutagenesis of active site residues in a class I endochitinase from chestnut seeds. Glycobiology 8:1021–1028

    Article  PubMed  CAS  Google Scholar 

  • Geurts R, Franssen H (1996) Signal transduction in Rhizobium-induced nodule formation. Plant Physiol 112:447–453

    Article  PubMed  CAS  Google Scholar 

  • Harman GE, Custis D (2006) Formulations of viable microorganisms and their method of use. US Patent WO 2007030557

  • Harman GE, Shoresh M (2007) The mechanisms and applications of opportunistic plant symbionts. In: Vurro M, Gressel J (eds) Novel biotechnologies for biocontrol agent enhancement and management, Springer, Amsterdam, pp 131–153

    Chapter  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004a) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  PubMed  CAS  Google Scholar 

  • Harman GE, Petzoldt R, Comis A, Chen J (2004b) Interactions between Trichoderma harzianum strain T22 and maize inbred line Mo17 and effects of these interactions on diseases caused by Pythium ultimum and Colletotrichum graminicola. Phytopathology 94:147–153

    Article  PubMed  Google Scholar 

  • Hennig M, Schlesier B, Dauter Z, Pfeffer S, Betzel C, Hohne WE, Wilson KS (1992) A TIM barrel protein without enzymatic activity? Crystal structure of narbonin at 1.8-angstrom resolution. FEBS Lett 306:80–84

    Article  PubMed  CAS  Google Scholar 

  • Hennig M, Pfeffer-Hennig S, Dauter Z, Wilson KS, Schlesier B, Nong VH (1995) Crystal structure of narbonin at 1.8-angstrom resolution. Acta Crysta D51:177–189

    CAS  Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316

    PubMed  CAS  Google Scholar 

  • Huynh QK, Hironaka CM, Levine EB, Smith CE, Borgmeyer JR, Shah DM (1992) Antifungal proteins from plants. Purification, molecular cloning, and antifungal properties of chitinases from maize seed. J Biol Chem 267:6635–6640

    PubMed  CAS  Google Scholar 

  • Ishihara A, Miyagawa H, Matsukawa T, Ueno T, Mayama S, Iwamura H (1988) Induction of hydroxyanthranilate hydroxycinnamoyl transferase activity of oligo-N-acetylchitooligosaccharides in oats. Phytochemistry (Oxford) 47:929–974

    Google Scholar 

  • Kasprzewska A (2003) Plant chitinases—regulation and function. Cell Mol Biol Lett 8:809–824

    PubMed  CAS  Google Scholar 

  • Lorito M (1998) Chitinolytic enzymes and their genes. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium, vol 2. Taylor and Francis, London, pp 73–99

    Google Scholar 

  • Lorito M, Di Pietro A, Hayes CK, Woo SL, Harman GE (1993a) Antifungal, synergistic interaction between chitinolytic enzymes from Trichoderma harzianum and Enterobacter cloacae. Phytopathology 83:721–728

    Article  CAS  Google Scholar 

  • Lorito M, Harman GE, Hayes C, Broadway R, Tronsmo A, Woo SL, Di Pietro A (1993b) Chitinolytic enzymes produced by Trichoderma harzianum: antifungal activity of endochitinase and chitobiosidase. Phytopathology 83:302–307

    Article  CAS  Google Scholar 

  • Lorito M, Hayes CK, Peterbauer C, Tronsmo A, Klemsdal S, Harman GE (1993c) Antifungal chitinolytic enzymes from Trichoderma harzianum and Gliocladium virens: purification, characterization, biological activity and molecular cloning. In: Muzzarelli RAA (ed) Chitin enzymology, European Chitin Society, Ancona, pp 383–392

    Google Scholar 

  • Lorito M, Peterbauer C, Hayes CK, Harman GE (1994) Synergistic interaction between fungal cell wall degrading enzymes and different antifungal compounds enhances inhibition of spore germination. Microbiology 140:623–629

    PubMed  CAS  Google Scholar 

  • Lorito M, Woo SL, Filippone E, Colucci G, Scala F (1996) Expression in plants of genes from mycoparasitic fungi—a new strategy for biological control of fungal diseases. International Union of Microbiological Societies (IUMS) Congresses, Jerusalem

  • Lorito M, Woo SL, Garcia Fernandez I, Colucci G, Harman GE, Pintor-Toro JA, Filippone E, Muccifora S, Lawrence CB, Zoina A, Tuzun S, Scala F (1998) Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proc Natl Acad Sci USA 95:7860–7865

    Article  PubMed  CAS  Google Scholar 

  • Mauch F, Mauch-Mani B, Boller T (1988) Antifungal hydrolases in pea tissue. II. Inhibition of fungal growth by combinations of chitinase and β-1,3 glucanase. Plant Physiol 88:936–942

    Article  PubMed  CAS  Google Scholar 

  • Nakazaki T, Tsukiyama T, Okumoto Y, Kageyama D, Naito K, Inouye K, Tanisaka T (2006) Distribution, structure, organ-specific expression and phylogenic analysis of the pathogenesis related protein-3 chitinase family in rice (Oryza sativa L.). Genome 49:619–630

    Article  PubMed  CAS  Google Scholar 

  • Neuhaus JM (1999) Plant chitinases (PR-3, PR-4, PR-8, PR-11). In: Datta SK, Muthukrishnan S (eds) Pathogenesis-related proteins in plants, CRC press, Boca Raton, pp 77–105

    Google Scholar 

  • Neuhaus J-M, Ahl-Goy P, Hinz U, Flores S, Meins F Jr (1991a) High-level expression of a tobacco chitinase gene in Nicotiana sylvestris. Susceptibility of transgenic plants to Cercospora nicotianae infection. Plant Mol Biol 16:141–151

    Article  PubMed  CAS  Google Scholar 

  • Neuhaus J-M, Sticher L, Meins FJ, Boller T (1991b) A short C-terminal sequence is necessary and sufficient for the targeting of chitinases to the plant vacuole. Proc Natl Acad Sci 88:10362–10366

    Article  PubMed  CAS  Google Scholar 

  • Nong VH, Schlesier B, Bassüner R, Repik A, Horstmann C, Müntz K (1995) Narbonin, a novel 2S protein from Vicia narbonensis L. seeds: cDNA, gene structure and developmentally regulated formation. Plant Mol Biol 28:61–72

    Article  PubMed  CAS  Google Scholar 

  • Oikawa A, Itoh E, Ishihara A, Iwamura H (2003) Purification and characterization of beta-N-acetylhexosaminidase from maize seedlings. J Plant Physiol 160:991–999

    Article  PubMed  CAS  Google Scholar 

  • Park CH, Kim S, Park JY, Ahn IP, Jwa NS, Im KH, Lee YH (2004) Molecular characterization of a pathogenesis-related protein 8 gene encoding a class III chitinase in rice. Mol Cells 17:144–150

    PubMed  CAS  Google Scholar 

  • Passarinho PA, de Vries SC (2002) Arabidopsis chitinases: a genomic survey. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book, American Society of Plant Biologists, Rockville, pp 1–25

    Google Scholar 

  • Patil VR, Widholm JM (1997) Possible correlation between increased vigour and chitinase activity expression in tobacco. J Exp Bot 48:1943–1950

    CAS  Google Scholar 

  • Poulton JE, Thomas MA, Ottwell KK, McCormick SJ (1985) Partial purification and characterization of a beta-N-acetylhexosaminidase from black cherry (Prunus serotina EHRH.) seeds. Plant Sci 42:107–114

    Article  CAS  Google Scholar 

  • Samac DA, Shah DM (1994) Effect of chitinase antisense RNA expression on disease susceptibility of Arabidopsis plants. Plant Mol Biol 25:587–596

    Article  PubMed  CAS  Google Scholar 

  • Schlumbaum A, Mauch F, Vogeli U, Boller T (1986) Plant chitinases are potent inhibitors of fungal growth. Nature 324:365–367

    Article  CAS  Google Scholar 

  • Schultze M, Staehelin C, Brunner F, Genetet I, Legrand M, Fritig B, Kondorosi E, Kondorosi A (1998) Plant chitinase/lysozyme isoforms show distinct substrate specificity and cleavage site preference towards lipochitooligosaccharide Nod signals. Plant J 16:571–580

    Article  CAS  Google Scholar 

  • Sela-Buurlage MB, Ponstein AS, Bres-Vloemans SA, Melchers LS, van den Elzen PJM, Cornelissen BJC (1993) Only specific tobacco (Nicotiana tabacum) chitinases and beta-1, 3-glucanases exhibit antifungal activity. Plant Physiol 101:857–863

    PubMed  CAS  Google Scholar 

  • Shoresh M, Harman GE (2008) Differential expression of maize chitinases in the presence or absence of Trichoderma harzianum strain T22. (in press)

  • Shoresh M, Yedidia I, Chet I (2005) Involvement of the jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology 95:76–84

    Article  CAS  PubMed  Google Scholar 

  • Suzukawa K, Yamagami T, Ohnuma T, Hirakawa H, Kuhara S, Aso Y, Ishiguro M (2003) Mutational analysis of amino acid residues involved in catalytic activity of a family 18 chitinase from tulip bulbs. Biosci Biotechnol Biochem 67:341–346

    Article  PubMed  CAS  Google Scholar 

  • Tiffin P (2004) Comparative evolutionary histories of chitinase genes in the genus Zea and family Poaceae. Genetics 167:1331–1340

    Article  PubMed  CAS  Google Scholar 

  • Trudel J, Asselin A (1989) Detection of chitinase activity after polyacrylamide gel electrophoresis. Anal Biochem 178:362–366

    Article  PubMed  CAS  Google Scholar 

  • Trudel J, Asselin A (1994) Protein purification for microsequencing by sequential native and denaturing polyacrylamide gel electrophoresis: application to one chitinase. Anal Biochem 221:214–216

    Article  PubMed  CAS  Google Scholar 

  • van der Holst PPG, Schlaman HRM, Spaink HP (2001) Proteins involved in the production and perception of oligosaccharides in relation to plant and animal development. Curr Opin Struct Biol 11:608–616

    Article  PubMed  Google Scholar 

  • van Hengel AJ, Tadesse Z, Immerzeel P, Schols H, van Kammen A, de Vries SC (2001) N-Acetylglucosamine and glucosamine-containing arabinogalactan proteins control somatic embryogenesis. Plant Physiol 125:1880–1890

    Article  PubMed  Google Scholar 

  • van Hengel AJ, van Kammen A, de Vries SC (2002) A relationship between seed development, Arabinogalactan-proteins (AGPs) and the AGP mediated promotion of somatic embryogenesis. Physiol Planta 114:637–644

    Article  Google Scholar 

  • Verburg JG, Smith CE, Lisek CA, Huynh QK (1992) Identification of an essential tyrosine residue in the catalytic site of a chitinase isolated from Zea mays that is selectively modified during inactivation with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide. J Biol Chem 267:3886–3893

    PubMed  CAS  Google Scholar 

  • Verburg JG, Rangwala SH, Samac DA, Luckow VA, Huynh QK (1993) Examination of the role of tyrosine-174 in the catalytic mechanism of the Arabidopsis thaliana chitinase: comparison of variant chitinases generated by site-directed mutagenesis and expressed in insect cells using baculovirus vectors. Arch Biochem Biophys 300:223–230

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Kobori K, Miyashita K, Fujii T, Sakai H, Uchida M, Tanaka H (1993) Identification of glutamic acid 204 and aspartic acid 200 in chitinase A1 of Bacillus circulans WL-12 as essential residues for chitinase activity. J Biol Chem 268:18567–18572

    PubMed  CAS  Google Scholar 

  • Wu S, Kriz AL, Widholm JM (1994) Molecular analysis of two cDNA clones encoding acidic class I chitinase in maize. Plant Physiol 105:1097–1105

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama R, Nishitani K (2004) Genomic basis for cell-wall diversity in plants. A comparative approach to gene families in rice and Arabidopsis. Plant Cell Physiol 45:1111–1121

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the US-Israel Agricultural Research and Development fund (BARD) grant US-3507-04 R and by Advanced Biological Marketing (Van Wert, OH). We thank Kristen Ondik for review and comments on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Shoresh.

Additional information

Communicated by C. Gebhardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shoresh, M., Harman, G.E. Genome-wide identification, expression and chromosomal location of the genes encoding chitinolytic enzymes in Zea mays . Mol Genet Genomics 280, 173–185 (2008). https://doi.org/10.1007/s00438-008-0354-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-008-0354-1

Keywords

Navigation