Skip to main content
Log in

RpoS regulation of gene expression during exponential growth of Escherichia coli K12

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

RpoS is a major regulator of genes required for adaptation to stationary phase in E. coli. However, the exponential phase expression of some genes is affected by rpoS mutation, suggesting RpoS may also have an important physiological role in growing cells. To test this hypothesis, we examined the regulatory role of RpoS in exponential phase using both genomic and biochemical approaches. Microarray expression data revealed that, in the rpoS mutant, the expression of 268 genes was attenuated while the expression of 24 genes was enhanced. Genes responsible for carbon source transport (the mal operon for maltose), protein folding (dnaK and mopAB), and iron acquisition (fepBD, entCBA, fecI, and exbBD) were positively controlled by RpoS. The importance of RpoS-mediated control of iron acquisition was confirmed by cellular metal analysis which revealed that the intracellular iron content of wild type cells was two-fold higher than in rpoS mutant cells. Surprisingly, many previously identified RpoS stationary-phase dependent genes were not controlled by RpoS in exponential phase and several genes were RpoS-regulated only in exponential phase, suggesting the involvement of other regulators. The expression of RpoS-dependent genes osmY, tnaA and malK was controlled by Crl, a transcriptional regulator that modulates RpoS activity. In summary, the identification of a group of exponential phase genes controlled by RpoS reveals a novel aspect of RpoS function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alteri CJ, Mobley HL (2007) Quantitative profile of the uropathogenic Escherichia coli outer membrane proteome during growth in human urine. Infect Immun 75:2679–2688

    Article  PubMed  CAS  Google Scholar 

  • Baev MV, Baev D, Radek AJ, Campbell JW (2006) Growth of Escherichia coli MG1655 on LB medium: monitoring utilization of sugars, alcohols, and organic acids with transcriptional microarrays. Appl Microbiol Biotechnol 71:310–316

    Article  PubMed  CAS  Google Scholar 

  • Barnard TJ, Watson ME Jr, McIntosh MA (2001) Mutations in the Escherichia coli receptor FepA reveal residues involved in ligand binding and transport. Mol Microbiol 41:527–536

    Article  PubMed  CAS  Google Scholar 

  • Barrick JE, Sudarsan N, Weinberg Z, Ruzzo WL, Breaker RR (2005) 6S RNA is a widespread regulator of eubacterial RNA polymerase that resembles an open promoter. RNA 11:774–784

    Article  PubMed  CAS  Google Scholar 

  • Boos W, Shuman H (1998) Maltose/maltodextrin system of Escherichia coli: transport, metabolism, and regulation. Microbiol Mol Biol Rev 62:204–229

    PubMed  CAS  Google Scholar 

  • Bougdour A, Lelong C, Geiselmann J (2004) Crl, a low temperature-induced protein in Escherichia coli that binds directly to the stationary phase sigma subunit of RNA polymerase. J Biol Chem 279:19540–19550

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Patten CL, Schellhorn HE (2004) Positive selection for loss of RpoS function in Escherichia coli. Mutat Res 554:193–203

    PubMed  CAS  Google Scholar 

  • Cheung KJ, Badarinarayana V, Selinger DW, Janse D, Church GM (2003) A microarray-based antibiotic screen identifies a regulatory role for supercoiling in the osmotic stress response of Escherichia coli. Genome Res 13:206–215

    Article  PubMed  CAS  Google Scholar 

  • Constantinidou C, Hobman JL, Griffiths L, Patel MD, Penn CW, Cole JA, Overton TW (2006) A reassessment of the FNR regulon and transcriptomic analysis of the effects of nitrate, nitrite, NarXL, and NarQP as Escherichia coli K12 adapts from aerobic to anaerobic growth. J Biol Chem 281:4802–4815

    Article  PubMed  CAS  Google Scholar 

  • Costanzo A, Ades SE (2006) Growth phase-dependent regulation of the extracytoplasmic stress factor, sigmaE, by guanosine 3′,5′-bispyrophosphate (ppGpp). J Bacteriol 188:4627–4634

    Article  PubMed  CAS  Google Scholar 

  • Dahl MK, Manson MD (1985) Interspecific reconstitution of maltose transport and chemotaxis in Escherichia coli with maltose-binding protein from various enteric bacteria. J Bacteriol 164:1057–1063

    PubMed  CAS  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  PubMed  CAS  Google Scholar 

  • Dippel R, Bergmiller T, Bohm A, Boos W (2005) The maltodextrin system of Escherichia coli: glycogen-derived endogenous induction and osmoregulation. J Bacteriol 187:8332–8339

    Article  PubMed  CAS  Google Scholar 

  • Farewell A, Kvint K, Nystrom T (1998) Negative regulation by RpoS: a case of sigma factor competition. Mol Microbiol 29:1039–1051

    Article  PubMed  CAS  Google Scholar 

  • Fayet O, Ziegelhoffer T, Georgopoulos C (1989) The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J Bacteriol 171:1379–1385

    PubMed  CAS  Google Scholar 

  • Ferguson AD, Hofmann E, Coulton JW, Diederichs K, Welte W (1998a) Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide. Science 282:2215–2220

    Article  PubMed  CAS  Google Scholar 

  • Ferguson GP, Creighton RI, Nikolaev Y, Booth IR (1998b) Importance of RpoS and Dps in survival of exposure of both exponential- and stationary-phase Escherichia coli cells to the electrophile N-ethylmaleimide. J Bacteriol 180:1030–1036

    PubMed  CAS  Google Scholar 

  • Gaal T, Mandel MJ, Silhavy TJ, Gourse RL (2006) Crl facilitates RNA polymerase holoenzyme formation. J Bacteriol 188:7966–7970

    Article  PubMed  CAS  Google Scholar 

  • Gragerov A, Nudler E, Komissarova N, Gaitanaris GA, Gottesman ME, Nikiforov V (1992) Cooperation of GroEL/GroES and DnaK/DnaJ heat shock proteins in preventing protein misfolding in Escherichia coli. Proc Natl Acad Sci USA 89:10341–10344

    Article  PubMed  CAS  Google Scholar 

  • Gyaneshwar P, Paliy O, McAuliffe J, Jones A, Jordan MI, Kustu S (2005) Lessons from Escherichia coli genes similarly regulated in response to nitrogen and sulfur limitation. Proc Natl Acad Sci USA 102:3453–3458

    Article  PubMed  CAS  Google Scholar 

  • Hansen UM, McClure WR (1980) Role of the sigma subunit of Escherichia coli RNA polymerase in initiation. II. Release of sigma from ternary complexes. J Biol Chem 255:9564–9570

    PubMed  CAS  Google Scholar 

  • Hantash FM, Ammerlaan M, Earhart CF (1997) Enterobactin synthase polypeptides of Escherichia coli are present in an osmotic-shock-sensitive cytoplasmic locality. Microbiology 143(Pt 1):147–156

    PubMed  CAS  Google Scholar 

  • Hantke K (1990) Dihydroxybenzoylserine–a siderophore for E. coli. FEMS Microbiol Lett 55:5–8

    PubMed  CAS  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858

    Article  PubMed  CAS  Google Scholar 

  • Heitzer A, Mason CA, Snozzi M, Hamer G (1990) Some effects of growth conditions on steady state and heat shock induced htpG gene expression in continuous cultures of Escherichia coli. Arch Microbiol 155:7–12

    Article  PubMed  CAS  Google Scholar 

  • Hengge-Aronis R (1996) Back to log phase: sigma S as a global regulator in the osmotic control of gene expression in Escherichia coli. Mol Microbiol 21:887–893

    Article  PubMed  CAS  Google Scholar 

  • Hengge-Aronis R (2002) Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 66:373–95

    Article  PubMed  CAS  Google Scholar 

  • Heyde M, Portalier R (1990) Acid shock proteins of Escherichia coli. FEMS Microbiol Lett 57:19–26

    Article  PubMed  CAS  Google Scholar 

  • Hirsch M, Elliott T (2005) Stationary-phase regulation of RpoS translation in Escherichia coli. J Bacteriol 187:7204–7213

    Article  PubMed  CAS  Google Scholar 

  • Horwich AL, Low KB, Fenton WA, Hirshfield IN, Furtak K (1993) Folding in vivo of bacterial cytoplasmic proteins: role of GroEL. Cell 74:909–917

    Article  PubMed  CAS  Google Scholar 

  • Jishage M, Ishihama A (1995) Regulation of RNA polymerase sigma subunit synthesis in Escherichia coli: intracellular levels of sigma 70 and sigma 38. J Bacteriol 177:6832–6835

    PubMed  CAS  Google Scholar 

  • Jishage M, Ishihama A (1998) A stationary phase protein in Escherichia coli with binding activity to the major sigma subunit of RNA polymerase. Proc Natl Acad Sci USA 95:4953–4958

    Article  PubMed  CAS  Google Scholar 

  • Jishage M, Iwata A, Ueda S, Ishihama A (1996) Regulation of RNA polymerase sigma subunit synthesis in Escherichia coli: intracellular levels of four species of sigma subunit under various growth conditions. J Bacteriol 178:5447–5451

    PubMed  CAS  Google Scholar 

  • Jishage M, Kvint K, Shingler V, Nystrom T (2002) Regulation of sigma factor competition by the alarmone ppGpp. Genes Dev 16:1260–1270

    Article  PubMed  CAS  Google Scholar 

  • Kang Y, Weber KD, Qiu Y, Kiley PJ, Blattner FR (2005) Genome-wide expression analysis indicates that FNR of Escherichia coli K-12 regulates a large number of genes of unknown function. J Bacteriol 187:1135–1160

    Article  PubMed  CAS  Google Scholar 

  • Khil PP, Camerini-Otero RD (2002) Over 1000 genes are involved in the DNA damage response of Escherichia coli. Mol Microbiol 44:89–105

    Article  PubMed  CAS  Google Scholar 

  • Kluck CJ, Patzelt H, Genevaux P, Brehmer D, Rist W, Schneider-Mergener J, Bukau B, Mayer MP (2002) Structure-function analysis of HscC, the Escherichia coli member of a novel subfamily of specialized Hsp70 chaperones. J Biol Chem 277:41060–41069

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi A, Hirakawa H, Hirata T, Nishino K, Yamaguchi A (2006) Growth phase-dependent expression of drug exporters in Escherichia coli and its contribution to drug tolerance. J Bacteriol 188:5693–5703

    Article  PubMed  CAS  Google Scholar 

  • Lacour S, Landini P (2004) SigmaS-dependent gene expression at the onset of stationary phase in Escherichia coli: function of sigmaS-dependent genes and identification of their promoter sequences. J Bacteriol 186:7186–7195

    Article  PubMed  CAS  Google Scholar 

  • Lange R, Fischer D, Hengge-Aronis R (1995) Identification of transcriptional start sites and the role of ppGpp in the expression of rpoS, the structural gene for the sigma S subunit of RNA polymerase in Escherichia coli. J Bacteriol 177:4676–4680

    PubMed  CAS  Google Scholar 

  • Lange R, Hengge-Aronis R (1994a) The cellular concentration of the sigma S subunit of RNA polymerase in Escherichia coli is controlled at the levels of transcription, translation, and protein stability. Genes Dev 8:1600–1612

    Article  PubMed  CAS  Google Scholar 

  • Lange R, Hengge-Aronis R (1994b) The nlpD gene is located in an operon with rpoS on the Escherichia coli chromosome and encodes a novel lipoprotein with a potential function in cell wall formation. Mol Microbiol 13:733–743

    Article  PubMed  CAS  Google Scholar 

  • Lee HJ, Park KJ, Lee AY, Park SG, Park BC, Lee KH, Park SJ (2003) Regulation of fur expression by RpoS and fur in Vibrio vulnificus. J Bacteriol 185:5891–5896

    Article  PubMed  CAS  Google Scholar 

  • Lelong C, Aguiluz K, Luche S, Kuhn L, Garin J, Rabilloud T, Geiselmann J (2007) The Crl-RpoS regulon of Escherichia coli. Mol Cell Proteomics 6:648–659

    Article  PubMed  CAS  Google Scholar 

  • Li C, Wong WH (2001) Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci USA 98:31–36

    Article  PubMed  CAS  Google Scholar 

  • Locher KP, Rees B, Koebnik R, Mitschler A, Moulinier L, Rosenbusch JP, Moras D (1998) Transmembrane signaling across the ligand-gated FhuA receptor: crystal structures of free and ferrichrome-bound states reveal allosteric changes. Cell 95:771–778

    Article  PubMed  CAS  Google Scholar 

  • Lombardo MJ, Aponyi I, Rosenberg SM (2004) General stress response regulator RpoS in adaptive mutation and amplification in Escherichia coli. Genetics 166:669–680

    Article  PubMed  CAS  Google Scholar 

  • Marshall OJ (2004) PerlPrimer: cross-platform, graphical primer design for standard, bisulphite and real-time PCR. Bioinformatics 20:2471–2472

    Article  PubMed  CAS  Google Scholar 

  • Mason CA, Dunner J, Indra P, Colangelo T (1999) Heat-induced expression and chemically induced expression of the Escherichia coli stress protein HtpG are affected by the growth environment. Appl Environ Microbiol 65:3433–3440

    PubMed  CAS  Google Scholar 

  • Nunoshiba T, Obata F, Boss AC, Oikawa S, Mori T, Kawanishi S, Yamamoto K (1999) Role of iron and superoxide for generation of hydroxyl radical, oxidative DNA lesions, and mutagenesis in Escherichia coli. J Biol Chem 274:34832–34837

    Article  PubMed  CAS  Google Scholar 

  • Nystrom T (2004) Growth versus maintenance: a trade-off dictated by RNA polymerase availability and sigma factor competition? Mol Microbiol 54:855–862

    Article  PubMed  CAS  Google Scholar 

  • Patten CL, Kirchhof MG, Schertzberg MR, Morton RA, Schellhorn HE (2004) Microarray analysis of RpoS-mediated gene expression in Escherichia coli K-12. Mol Genet Genomics 272:580–591

    Article  PubMed  CAS  Google Scholar 

  • Pease AJ, Roa BR, Luo W, Winkler ME (2002) Positive growth rate-dependent regulation of the pdxA, ksgA, and pdxB genes of Escherichia coli K-12. J Bacteriol 184:1359–1369

    Article  PubMed  CAS  Google Scholar 

  • Rahman M, Hasan MR, Oba T, Shimizu K (2006) Effect of rpoS gene knockout on the metabolism of Escherichia coli during exponential growth phase and early stationary phase based on gene expressions, enzyme activities and intracellular metabolite concentrations. Biotechnol Bioeng 94:585–595

    Article  PubMed  CAS  Google Scholar 

  • Robbe-Saule V, Lopes MD, Kolb A, Norel F (2007) Physiological effects of Crl in Salmonella are modulated by sigmaS level and promoter specificity. J Bacteriol 189:2976–2987

    Article  PubMed  CAS  Google Scholar 

  • Sammartano LJ, Tuveson RW, Davenport R (1986) Control of sensitivity to inactivation by H2O2 and broad-spectrum near-UV radiation by the Escherichia coli katF (rpoS) locus. J Bacteriol 168:13–21

    PubMed  CAS  Google Scholar 

  • Schellhorn HE, Audia JP, Wei LI, Chang L (1998) Identification of conserved, RpoS-dependent stationary-phase genes of Escherichia coli. J Bacteriol 180:6283–6291

    PubMed  CAS  Google Scholar 

  • Schellhorn HE, Stones VL (1992) Regulation of katF (rpoS) and katE in Escherichia coli K-12 by weak acids. J Bacteriol 174:4769–4776

    PubMed  CAS  Google Scholar 

  • Schembri MA, Kjaergaard K, Klemm P (2003) Global gene expression in Escherichia coli biofilms. Mol Microbiol 48:253–267

    Article  PubMed  CAS  Google Scholar 

  • Schweder T, Lee KH, Lomovskaya O, Matin A (1996) Regulation of Escherichia coli starvation sigma factor (sigmaS) by ClpXP protease. J Bacteriol 178:470–476

    PubMed  CAS  Google Scholar 

  • Seputiene V, Daugelavicius A, Suziedelis K, Suziedeliene E (2006) Acid response of exponentially growing Escherichia coli K-12. Microbiol Res 161:65–74

    Article  PubMed  CAS  Google Scholar 

  • Shea CM, McIntosh MA (1991) Nucleotide sequence and genetic organization of the ferric enterobactin transport system: homology to other periplasmic binding protein-dependent systems in Escherichia coli. Mol Microbiol 5:1415–1428

    Article  PubMed  CAS  Google Scholar 

  • Torres AG, Redford P, Welch RA, Payne SM (2001) TonB-dependent systems of uropathogenic Escherichia coli: aerobactin and heme transport and TonB are required for virulence in the mouse. Infect Immun 69:6179–6185

    Article  PubMed  CAS  Google Scholar 

  • Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121

    Article  PubMed  CAS  Google Scholar 

  • Typas A, Barembruch C, Possling A, Hengge R (2007) Stationary phase reorganisation of the Escherichia coli transcription machinery by Crl protein, a fine-tuner of sigmas activity and levels. EMBO J 26:1569–1578

    Article  PubMed  CAS  Google Scholar 

  • Van Hove B, Staudenmaier H, Braun V (1990) Novel two-component transmembrane transcription control: regulation of iron dicitrate transport in Escherichia coli K-12. J Bacteriol 172:6749–6758

    PubMed  Google Scholar 

  • Vijayakumar SR, Kirchhof MG, Patten CL, Schellhorn HE (2004) RpoS-regulated genes of Escherichia coli identified by random lacZ fusion mutagenesis. J Bacteriol 186:8499–8507

    Article  PubMed  CAS  Google Scholar 

  • Wassarman KM, Storz G (2000) 6S RNA regulates E. coli RNA polymerase activity. Cell 101:613–623

    Article  PubMed  CAS  Google Scholar 

  • Weber H, Polen T, Heuveling J, Wendisch VF, Hengge R (2005) Genome-wide analysis of the general stress response network in Escherichia coli: sigmaS-dependent genes, promoters, and sigma factor selectivity. J Bacteriol 187:1591–1603

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a research operating grant from the Canadian Institutes of Health Research (CIHR) to H.E.S. We thank Z. Yu, X.W. Wang and C. Lu for technical support and S.M. Chiang and C. Joyce for critically reviewing this manuscript. The data discussed in this publication have been deposited in NCBIs Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) and are accessible through GEO Series accession number GSE9814.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herb E. Schellhorn.

Additional information

Communicated by D. Andersson.

T. Dong and M. G. Kirchhof contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 148 kb)

(XLS 124 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, T., Kirchhof, M.G. & Schellhorn, H.E. RpoS regulation of gene expression during exponential growth of Escherichia coli K12. Mol Genet Genomics 279, 267–277 (2008). https://doi.org/10.1007/s00438-007-0311-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-007-0311-4

Keywords

Navigation