Skip to main content

Advertisement

Log in

Serial Analysis of Gene Expression (SAGE) of Magnaporthe grisea: genes involved in appressorium formation

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Treatment with cyclic AMP (cAMP) induces appressorium formation in the phytopathogenic fungus Magnaporthe grisea, the causative agent of rice blast disease. In a search for the M. grisea genes responsible for appressorium formation and host invasion, SAGE (Serial Analysis of Gene Expression) was carried out using mRNA isolated from fungal conidia germinating in the presence and absence of cAMP. From cAMP-treated conidia 5087 tags including 2889 unique tags were isolated, whereas untreated conidia yielded 2342 unique tags out of total of 3938. cAMP treatment resulted in up- and down-regulation of genes corresponding to 57 and 53 unique tags, respectively. Upon consultation of EST/cDNA databases, 22 tags with higher representation in cAMP-treated conidia were annotated with putative gene names. Furthermore, 28 tags corresponding to cAMP-induced genes could be annotated with the help of the recently published genome sequence of M. grisea. cAMP-induced genes identified by SAGE included many genes that have not been described so far, as well as a number of genes known to be involved in pathogenicity, e.g. MPG1, MAS1 and MAC1. RT-PCR of 13 randomly selected genes confirmed the SAGE results, verifying the fidelity of the SAGE data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1A, B.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Baker B, Zambryski P, Staskawicz B, Dinesh-Kumar SP (1997) Signaling in plant-microbe interactions. Science 276:726–733

    CAS  PubMed  Google Scholar 

  • Balhadère PV, Talbot NJ (2001) PDE1 encodes a P-type ATPase involved in appressorium-mediated plant infection by the rice blast fungus Magnaporthe grisea. Plant Cell 13:1987–2004

    PubMed  Google Scholar 

  • Balhadère PV, Foster AJ, Talbot NJ (1999) Identification of pathogenicity mutants of the rice blast fungus Magnaporthe grisea by insertional mutagenesis. Mol Plant-Microbe Interact 12:129–142

    Google Scholar 

  • Beckerman JL, Ebbole DJ (1996) MPG1, a gene encoding a fungal hydrophobin of Magnaporthe grisea, is involved in surface recognition. Mol Plant-Microbe Interact 9:450–456

    Google Scholar 

  • Choi W, Dean RA (1997) The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and others aspects of growth and development. Plant Cell 9:1973–1983

    Article  CAS  PubMed  Google Scholar 

  • Chumley FG, Valent B (1990) Genetic analysis of melanin deficient, nonpathogenic mutants of Magnaporthe grisea. Mol Plant-Microbe Interact 3:135–143

    Google Scholar 

  • Clergeot PH, Gourgues M, Cots J, Laurans F, Latorse MP, Pépin R, Tharreau D, Notteghem JL, Lebrun MH (2001) PLS1, a gene encoding a tetraspanin-like protein, is required for penetration of rice leaf by the fungal pathogen Magnaporthe grisea. Proc Natl Acad Sci USA 98:6963–6968

    CAS  PubMed  Google Scholar 

  • Hamer JE, Talbot NJ (1998) Infection-related development in the rice blast fungus Magnaporthe grisea. Curr Opin Microbiol 1:693–697

    CAS  PubMed  Google Scholar 

  • Howard RJ, Valent B (1996) Breaking and entering: host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annu Rev Microbiol 50:491–512

    CAS  PubMed  Google Scholar 

  • Hwang C-S, Flaishman MA, Kolattukudy PE (1995) Cloning of a gene expressed during appressorium formation by Colletotrichum gloeosporioides and a marked decrease in virulence by disruption of this gene. Plant Cell 7:183–193

    CAS  PubMed  Google Scholar 

  • Idnurm A, Howlett BJ (2001) Pathogenicity genes of phytopathogenic fungi. Mol Plant Pathol 2:241–255

    Article  CAS  Google Scholar 

  • Kal AJ, van Zonneveld AJ, Benes V, van den Berg M, Groot Koerkamp M, Albermann K, Strack N, Ruitjer JM, Richter A, Dujon B, Ansorge W, Tabak HF (1999) Dynamics of gene expression revealed by comparison of serial analysis of gene expression transcript profiles from yeast grown on two different carbon sources. Mol Biol Cell 10:1859–1872

    CAS  PubMed  Google Scholar 

  • Kanzaki H, Nirasawa S, Saitoh H, Ito M, Nishihara M, Terauchi R, Nakamura I (2002) Overexpression of the wasabi defensin gene confers enhanced resistance to blast fungus ( Magnaporthe grisea) in transgenic rice. Theor Appl Genet 105:809–814

    Article  Google Scholar 

  • Kim S, Ahn I-P, Lee Y-H (2001) Analysis of genes expressed during rice-Magnaporthe grisea interactions. Mol Plant-Microbe Interact 14:1340–1346

    Google Scholar 

  • Lee Y-H, Dean RA (1993) cAMP regulates infection structure formation in the plant pathogenic fungus Magnaporthe grisea. Plant Cell 5:693–700

    CAS  PubMed  Google Scholar 

  • Liu S, Dean RA (1997) G protein α-subunit genes control growth, development and pathogenicity of Magnaporthe grisea. Mol Plant-Microbe Interact 10:1075–1086

    Google Scholar 

  • Martin SL, Blackmon BP, Rajagopalan R, Houfek TD, Sceeles RG, Denn SO, Mitchell TK, Brown DE, Wing RA, Dean RA (2002) MagnaportheDB: a federated solution for integrating physical and genetic map data with BAC end derived sequences for the rice blast fungus Magnaporthe grisea. Nucleic Acids Res 30:121–124

    CAS  PubMed  Google Scholar 

  • Matsumura H, Nirasawa S, Terauchi R (1999) Transcript profiling in rice ( Oryza sativa L.) seedlings using serial analysis of gene expression (SAGE). Plant J 20:719–726

    CAS  PubMed  Google Scholar 

  • Matsumura H, Nirasawa S, Kiba A, Urasaki N, Saitoh H, Ito M, Kawai-Yamada M, Uchimiya H, Terauchi R (2003) Overexpression of Bax inhibitor suppresses the fungal elicitor-induced cell death in rice ( Oryza sativa L.) cells. Plant J 32:425–434

    Article  Google Scholar 

  • Mitchell TK, Dean RA (1995) The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast fungus Magnaporthe grisea. Plant Cell 7:1869–1878

    CAS  PubMed  Google Scholar 

  • Park G, Xue C, Zheng L, Lam S, Xu J-R (2002) MST12 regulates infectious growth but not appressorium formation in the rice blast fungus Magnaporthe grisea. Mol Plant-Microbe Interact 15:183–192

    Google Scholar 

  • Rauyaree P, Choi W, Fang E, Blackmon B, Dean RA (2001) Genes expressed during early stages of rice infection with the rice blast fungus Magnaporthe grisea. Mol Plant Pathol 2:347–354

    CAS  Google Scholar 

  • Saitoh H, Terauchi R (2002) Virus-induced silencing of FtsH gene in Nicotiana benthamiana causes a striking bleached leaf phenotype. Genes Genet Syst 77:335–340

    Article  PubMed  Google Scholar 

  • Soanes DM, Skinner W, Keon J, Hargreaves J, Talbot NJ (2002) Genomics of phytopathogenic fungi and the development of bioinformatic resources. Mol Plant- Microbe Interact 15:421–427

    Google Scholar 

  • Talbot NJ, Ebbole DJ, Hamer JE (1993) Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell 5:1575–1590

    Article  CAS  PubMed  Google Scholar 

  • Thomas SW, Glaring MA, Rasmussen SW, Kinane JT, Oliver RP (2002) Transcript profiling in the barley mildew pathogen Blumeria graminis by serial analysis of gene expression (SAGE). Mol Plant-Microbe Interact 15:847–856

    Google Scholar 

  • Thompson JE, Fahnestock S, Farrall L, Liao D-I, Valent B, Jordan DB (2000) The second naphthol reductase of fungal melanin biosynthesis in Magnaporthe grisea. J Biol Chem 275:34867–34872

    CAS  PubMed  Google Scholar 

  • Tucker SL, Talbot NJ (2001) Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annual Rev. Phytopathol. 39:386–407

    Google Scholar 

  • Urban M, Bhargava T, Hamer JE (1999) An ATP-driven efflux pump is a novel pathogenicity factor in rice blast disease. EMBO J 18:512–521

    CAS  PubMed  Google Scholar 

  • Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484–487

    Google Scholar 

  • Velculescu VE, Zhang L, Zhou W, Vogelstein J, Basrai MA, Bassett DE, Jr, Hieter P, Vogelstein B, Kinzler KW (1997) Characterization of the yeast transcriptome. Cell 88:243–251

    PubMed  Google Scholar 

  • Viaud MC, Balhadère PV, Talbot NJ (2002) A Magnaporthe grisea cyclophilin acts as a virulence determinant during plant infection. Plant Cell 14:917–930

    CAS  PubMed  Google Scholar 

  • Vidal-Cros A, Viviani F, Labesse G, Boccara M, Gaudry M (1994) Polyhydroxynaphthalene reductase involved in melanin biosynthesis in Magnaporthe grisea. Purification, cDNA cloning and sequencing. Eur J Biochem 219:985–992

    CAS  PubMed  Google Scholar 

  • Xu J-R, Hamer JE (1996) MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev 10:2696–2706

    CAS  PubMed  Google Scholar 

  • Xu J-R, Urban M, Sweigard JA, Hamer JE (1997) The CPKA gene of Magnaporthe grisea is essential for appressorial penetration. Mol Plant-Microbe Interact 10:187–194

  • Xue C, Park G, Choi W, Zheng L, Dean RA, Xu J-R (2002) Two novel fungal virulence genes specifically expressed in appressoria of the rice blast fungus. Plant Cell 14:2107–2119

    CAS  PubMed  Google Scholar 

  • Zhang L, Zhou W, Velculescu VE, Kern SE, Hruban RH, Hamilton SR, Vogelstein B, Kinzler KW (1997) Gene expression profiles in normal and cancer cells. Science 276:1268–1271

    Google Scholar 

Download references

Acknowledgements

We thank Dr. K. Kinzler (Johns Hopkins University, Baltimore) for provision of the SAGE protocol and SAGE analysis software, Dr. S. Koizumi (Tohoku Agricultural Research Center, MAFF, Japan) for the gift of M. grisea INE86-137, and Dr. N. Talbot (University of Exeter, Exeter, UK) for invaluable discussion. We are grateful to Dr. Y. Takano (Kyoto University, Kyoto, Japan) for invaluable suggestions and for technical advice concerning fungal cultures and RNA isolation from M. grisea. Thanks are due to Dr. P. C. Sharma (Ch. Charan Singh University, Meerut, India) and to Dr. S. Rakshit (Directorate of Maize Research, Indian Agricultural Research Institute, India) for the improvement of the manuscript. This work was partly supported by Grant No. S1-1105 from the Institute of Bioresources, Tsukuba, Japan, and by the Research for Future Program of the Japan Society for the Promotion of Science

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Saitoh.

Additional information

Communicated by E. Cerdá-Olmedo

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irie, T., Matsumura, H., Terauchi, R. et al. Serial Analysis of Gene Expression (SAGE) of Magnaporthe grisea: genes involved in appressorium formation. Mol Genet Genomics 270, 181–189 (2003). https://doi.org/10.1007/s00438-003-0911-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-003-0911-6

Keywords

Navigation