Skip to main content

Advertisement

Log in

Opportunistic nature of the mammalian microsporidia: experimental transmission of Trachipleistophora extenrec (Fungi: Microsporidia) between mammalian and insect hosts

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Spores of Trachipleistophora extenrec, originally isolated from the muscles of the Madagascan insectivore Hemicentetes semispinosus and maintained by serial passage in severe combined immunodeficiency (SCID) mice, were fed to larvae of the Egyptian cotton leafworm Spodoptera littoralis. Extensive infection of larval tissues ensued and caused larval and pupal mortality. The development of T. extenrec in the insect host, studied both by light and electron microscopy, followed generally the same life cycle as in the mammalian host. However, some differences in the fine structure of the parasite grown in both types of hosts were found. Spores isolated from the insect host caused infection of SCID mice when injected intramuscularly. Our results suggest that T. extenrec may be originally an insect microsporidian. This likelihood is corroborated by its structural similarity and phylogenetic relationship to two other microsporidia having insects either as unique hosts (Vavraia culicis) or being able to infect both mammalian and insect host (Trachipleistophora hominis).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1–4
Fig. 5–17
Fig. 18–27
Fig. 28–35

Similar content being viewed by others

References

  • Cali A, Neafie R, Weiss LM, Ghosh K, Vergara RB, Gupta R, Takvorian PM (2010) Human vocal cord infection with the microsporidium Anncaliia algerae. J Eukaryot Microbiol 57:562–567

    Article  PubMed  Google Scholar 

  • Canning EU, Hulls RH (1970) A microsporidian infection of Anopheles gambiae Giles, from Tanzania, interpretation of its mode of transmission and notes on Nosema infections in mosquitoes. J Protozool 17:531–539

    PubMed  CAS  Google Scholar 

  • Cheney SA, Lafranchi-Tristem NJ, Canning EU (2000) Phylogenetic relationships of Pleistophora-like microsporidia based on small subunit ribosomal DNA sequences and implications for the source of Trachipleistophora hominis infections. J Eukaryot Microbiol 47:280–287

    Article  PubMed  CAS  Google Scholar 

  • Cheney SA, Lafranchi-Tristem NJ, Bourges D, Canning EU (2001) Relationships of microsporidian genera, with emphasis on the polysporous genera, revealed by sequences of the largest subunit of RNA polymerase II (RPB 1). J Eukaryot Microbiol 48:111–117

    Article  PubMed  CAS  Google Scholar 

  • Coyle CM, Weiss LM, Rhodes LV, Cali A, Takvorian PM, Brown DF, Visvesvara GS, Xiao L, Naktin J, Young E, Gareca M, Colasante G, Wittner M (2004) Fatal myositis due to the microsporidian Brachiola algerae, a mosquito pathogen. New Engl J Med 351:42–47

    Article  PubMed  CAS  Google Scholar 

  • Didier ES, Bessinger GT (1999) Host-parasite relationships in microsporidiosis: animal models and immunology. In: Wittner M, Weiss LM (eds) Microsporidia and microsporidiosis. Washington D.C, ASM, pp 225–257

    Google Scholar 

  • Field AS, Marriott DJ, Milliken ST, Brew BJ, Canning EU, Kench JG, Darveniza P, Harkness JL (1996) Myositis associated with a newly described microsporidian, Trachipleistophora hominis, in a patient with AIDS. J Clin Microbiol 34:2803–2811

    PubMed  CAS  Google Scholar 

  • Franzen C, Nassonova ES, Scholmerich J, Issi IV (2006) Tranfer of the members of the genus Brachiola (Microsporidia) to the genus Anncaliia based on ultrastructural and molecular data. J Eukaryot Microbiol 53:26–35

    Article  PubMed  CAS  Google Scholar 

  • Hirsch JG, Fedorko ME (1968) Ultrastructure of human leukocytes after simultaneous fixation with glutaraldehyde and osmium tetroxide and “postfixation” in uranyl acetate. J Cell Biol 38:615–627

    Article  PubMed  CAS  Google Scholar 

  • Hollister WS, Canning EU, Weidner E, Field AS, Kench J, Marriott DJ (1996) Development and ultrastructure of Trachipleistophora hominis n.g., n.sp. after in vitro isolation from an AIDS patient and inoculation into athymic mice. Parasitology 112:143–154

    Article  PubMed  Google Scholar 

  • Juarez SI, Putaporntip C, Jongwutiwes S, Ichinose A, Yanagi T, Kanbara H (2005) In vitro cultivation and electron microscopy characterization Trachipleistophora anthropophthera isolated from the cornea of an AIDS patient. J Eukaryot Microbiol 52:179–190

    Article  PubMed  Google Scholar 

  • Kucerova Z, Moura H, Visvesvara GS, Leitch GJ (2004) Differences between Brachiola (Nosema) algerae isolates of human and insect origin when tested using an in vitro spore germination assay and a cultured cell infection assay. J Eukaryot Microbiol 51:339–343

    Article  PubMed  Google Scholar 

  • Lowman PM, Takvorian PM, Cali A (2000) The effects of elevated temperatures and various time-temperature combinations on the development of Brachiola (Nosema) algerae N. Comb. in mammalian cell culture. J Eukaryot Microbiol 47:221–234

    Article  PubMed  CAS  Google Scholar 

  • Malone LA, Wigley PJ, Dhana SD (1987) Identity of a microsporidium from three New Zealand pasture insects: Costelytra zealandica (Coleoptera, Scarabeidae), Wiseana spp. (Lepidoptera, Hepialidae), and Listronotus bonariensis (Coleoptera, Curculionidae). J Invertebr Pathol 49:135–144

  • Mathis A, Weber R, Deplazes P (2005) Zoonotic potential of the microsporidia. Clin Microbiol Rev 18:423–445

    Article  PubMed  CAS  Google Scholar 

  • Müller A, Stellermann K, Hartmann P, Schrppe M, Fätkenheuer G, Salzberger B, Diehl V, Franzen C (1999) A powerful DNA extraction method and PCR for detection of microsporidia in clinical stool specimens. Clin Diagn Lab Immun 6:243–246

    Google Scholar 

  • Undeen AH, Krueger CM (1992) Effect of Nosema algerae on the house fly Musca domestica (Diptera: Muscidae). J Am Mosquito Contr 8:268–271

    CAS  Google Scholar 

  • Undeen AH, Maddox JV (1973) The infection of nonmosquito hosts by injection with spores of the microsporidian Nosema algerae. J Invertebr Pathol 22:258–263

    Article  PubMed  CAS  Google Scholar 

  • Vávra J, Undeen AH (1970) Nosema algerae n. sp. (Cnidospora, Microsporida) a pathogen in a laboratory colony of Anopheles stephensi Liston (Diptera, Culicidae). J Protozool 17:240–249

    PubMed  Google Scholar 

  • Vávra J, Maddox JV (1976) Methods in microsporidiology. In: Bulla LA Jr, Cheng TC (eds) Comparative pathobiology of the microsporidia. Plenum, New York, pp 281–319

    Google Scholar 

  • Vávra J, Becnel JJ (2007) Vavraia culicis (Weiser, 1947) Weiser, 1977 revisited: Cytological characterisation of a Vavraia culicis-like microsporidium isolated from mosquitoes in Florida and the establishment of Vavraia culicis floridensis subsp. n. Folia Parasit 54:259–271

    Google Scholar 

  • Vávra J, Yachnis AT, Shadduck JA, Orenstein JM (1998) Microsporidia of the genus Trachipleistophora-causative agents of human microsporidiosis: description of Trachipleistophora anthropophthera n. sp. (Protozoa: Microsporidia). J Eukaryot Microbiol 45:273–283

    Article  PubMed  Google Scholar 

  • Vávra J, Horák A, Modrý D, Lukeš J, Koudela B (2006) Trachipleistophora extenrec n. sp. a new microsporidian (Fungi: Microsporidia) infecting mammals. J Eukaryot Microbiol 53:464–476

    Article  PubMed  Google Scholar 

  • Visvesvara GS, Belloso M, Moura H, Da Silva AJ, Moura INS, Leitch GJ, Schwartz DA, Chevez-Barrios P, Wallace S, Pieniazek NJ, Goosey JD (1999) Isolation of Nosema algerae from the cornea of an immunocompetent patient. J Eukaryot Microbiol 46:10S

    Article  PubMed  CAS  Google Scholar 

  • Visvesvara GS, Moura H, Leitch GJ, Schwartz DA, Xiao LX (2005) Public health importance of Brachiola algerae (Microsporidia)—an emerging pathogen of humans. Folia Parasit 52:83–94

    Google Scholar 

  • Weber R, Bryan RT, Schwartz DA, Owen RL (1994) Human microsporidial infections. Clin Microbiol Rev 7:426–461

    PubMed  CAS  Google Scholar 

  • Weidner E, Canning EU, Hollister WF (1997) The plaque matrix (PQM) and tubules at the surface of intramuscular parasite, Trachipleistophora hominis. J Eukaryot Microbiol 44:359–365

    Article  PubMed  CAS  Google Scholar 

  • Weidner E, Canning EU, Rutledge CR, Meek CL (1999) Mosquito (Diptera: Culicidae) host compatibility and vector competency for the human myositic parasite Trachipleistophora hominis (Phylum Microspora). J Med Entomol 36:522–525

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Ivan Gelbič for help in experiments with S. littoralis. This work was supported by the grants No. 2820/2006/G3 of the Ministry of Education, Youth and Sports and Nos. 524/03/H133 and 524/07/1003 of the Grant Agency of the Czech Republic and research projects of the Institute of Parasitology, AS CR Z60220518. Mrs. E. Kirchmannová kindly prepared material for electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Břetislav Koudela.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vávra, J., Kamler, M., Modrý, D. et al. Opportunistic nature of the mammalian microsporidia: experimental transmission of Trachipleistophora extenrec (Fungi: Microsporidia) between mammalian and insect hosts. Parasitol Res 108, 1565–1573 (2011). https://doi.org/10.1007/s00436-010-2213-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-010-2213-3

Keywords

Navigation