Skip to main content

Advertisement

Log in

Detection of Toxoplasma gondii, Neospora caninum, and Encephalitozoon cuniculi in the brains of common voles (Microtus arvalis) and water voles (Arvicola terrestris) by gene amplification techniques in western Austria (Vorarlberg)

  • Short Communication
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Knowledge about the protozoan parasite fauna in voles (Arvicolinae) in Austria is rather limited, although some of these pathogens play an important role in human medicine and cause zoonoses (e.g., Toxoplasma gondii and Encephalitozoon cuniculi). Others are of relevance in veterinary medicine and have a negative economic impact (e.g., Neospora caninum). Two hundred sixty-eight common voles (Microtus arvalis) and 86 water voles (Arvicola terrestris) from the most western Austrian province, Vorarlberg, were analyzed with PCR techniques for infections with T. gondii, N. caninum, and E. cuniculi. Brain tissues of two common voles (0.7%) and of four water voles (4.7%) tested positive for T. gondii. Furthermore, analysis of four common voles (1.5%) and two water voles (2.3%) generated positive findings for N. caninum, and brain tissues of 16 common voles (6%) and six water voles (7%) tested positive for E. cuniculi. Accordingly, this study not only demonstrates the autochthonous existence of the zoonotic parasites T. gondii and E. cuniculi in voles in Vorarlberg, it also provides the first evidence of an occurrence of N. caninum in animals of the subfamily Arvicolinae, and it is an additional contribution to investigations of the sylvatic cycle of N. caninum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Aspöck H, Hassl A (1990) Parasitic infections in HIV patients in Austria: first results of a long-term study. Zentralbl Bakteriol 272(4):540–546

    PubMed  Google Scholar 

  • Aspöck H, Auer H, Walochnik J (2002) Toxoplasmose: Harmlose Unpässlichkeit für Gesunde—lebensbedrohliche Krankheit für Ungeborene und für AIDS-Patienten. Denisia 6:179–199, German

    Google Scholar 

  • Biró Z, Lanszki J, Szemethy L, Heltai M, Randi E (2005) Feeding habits of feral domestic cats (Felis catus), wild cats (Felis silvestris) and their hybrids: trophic niche overlap among cat groups in Hungary. J Zool Lond 266:187–196

    Article  Google Scholar 

  • Burg JL, Grover CM, Pouletty P, Boothroyd JC (1989) Direct and sensitive detection of a pathogenic protozoan, Toxoplasma gondii, by polymerise chain reaction. J Clin Microbiol 27(8):1787–1792

    CAS  PubMed  Google Scholar 

  • Didier ES, Didier PJ, Snowden KF, Shadduck JA (2000) Microsporidiosis in mammals. Microbes Infect 2(6):709–720

    Article  CAS  PubMed  Google Scholar 

  • Dubey JP (2003) Review of Neospora caninum and neosporosis in animals. Korean J Parasitol 41(1):1–16

    Article  CAS  PubMed  Google Scholar 

  • Dubey JP, Schares G, Ortega-Mora LM (2007) Epidemiology and control of neosporosis and Neospora caninum. Clin Microbiol Rev 20(2):327–367

    Article  Google Scholar 

  • Edelhofer R (2004) Seroepidemiologische Studien zur Toxoplasmose aus human- und veterinärmedizinischer Sicht—eine Retrospektive der letzten 25 Jahre in Österreich. Denisia 13:411–417, German

    Google Scholar 

  • Ferroglio E, Pasino M, Romano A, Grande D, Pregel P, Trisciuoglio A (2007) Evidence of Neospora caninum DNA in wild rodents. Vet Parasitol 148(3–4):346–349

    Article  CAS  PubMed  Google Scholar 

  • Frank C (1978) Protozoa of small mammals in the Neusidlersee region. Angew Parasitol 19(3):137–154

    CAS  PubMed  Google Scholar 

  • Franzen C, Müller A (1999) Molecular techniques for detection, species differentiation, and phylogenetic analysis of microsporidia. Clin Microbiol Rev 12(2):243–285

    CAS  PubMed  Google Scholar 

  • Gondim LF (2006) Neospora caninum in wildlife. Trends Parasitol 22(6):247–252

    Article  PubMed  Google Scholar 

  • Hejlícek K, Literák I, Nezval J (1997) Toxoplasmosis in wild mammals from the Czech Republic. J Wildl Dis 33(3):480–485

    PubMed  Google Scholar 

  • Hersteinsson P, Gunnarsson E, Hjartardóttir S, Skírnisson K (1993) Prevalence of Encephalitozoon cuniculi antibodies in terrestrial mammals in Iceland, 1986 to 1989. J Wildl Dis 29(2):341–344

    CAS  PubMed  Google Scholar 

  • Hill D, Dubey JP (2002) Toxoplasma gondii: transmission, diagnosis and prevention. Clin Microbiol Infect 8(10):634–640, Review

    Article  CAS  PubMed  Google Scholar 

  • Huang CC, Yang CH, Watanabe Y, Liao YK, Ooi HK (2004) Finding of Neospora caninum in the wild brown rat (Rattus norvegicus). Vet Res 35(3):283–290

    Article  PubMed  Google Scholar 

  • Hughes JM, Williams RH, Morley EK, Cook DA, Terry RS, Murphy RG, Smith JE, Hide G (2006) The prevalence of Neospora caninum and co-infection with Toxoplasma gondii by PCR analysis in naturally occurring mammal populations. Parasitology 132(Pt1):29–36

    CAS  PubMed  Google Scholar 

  • Jenkins MC, Parker C, Hill D, Pickney RD, Dyer R, Dubey JP (2007) Neospora caninum detected in feral rodents. Vet Parasitol 143(2):161–165

    Article  CAS  PubMed  Google Scholar 

  • Katzwinkel-Wladarsch S, Lieb M, Helse W, Löscher T, Rinder H (1996) Direct amplification and species determination of microsporidian DNA from stool specimens. Trop Med Int Health 1(3):373–378

    Article  CAS  PubMed  Google Scholar 

  • Katzwinkel-Wladarsch S, Deplazes P, Weber R, Löscher T, Rinder H (1997) Comparison of polymerase chain reaction with light microscopy for detection of microsporidia in clinical specimens. Eur J Clin Microbiol Infect Dis 16(1):7–10

    Article  CAS  PubMed  Google Scholar 

  • Lanszki J (2005) Diet composition of red fox during rearing in a moor: a case study. Folia Zool 54(1–2):213–216

    Google Scholar 

  • Mathis A, Weber R, Deplazes P (2005) Zoonotic potential of the microsporidia. Clin Microbiol Rev 18(3):423–445

    Article  CAS  PubMed  Google Scholar 

  • Müller N, Zimmermann V, Hentrich B, Gottstein B (1996) Diagnosis of Neospora caninum and Toxoplasma gondii infection by PCR and DNA hybridisation immunoassay. J Clin Microbiol 34(11):2850–2852

    PubMed  Google Scholar 

  • Muller-Doblies UU, Herzog K, Tanner I, Mathis A, Deplazes P (2002) First isolation and characterisation of Encephalitozoon cuniculi from a free-ranging rat (Rattus norvegicus). Vet Parasitol 107(4):279–285

    Article  PubMed  Google Scholar 

  • Murphy TM, Walochnik J, Hassl A, Moriarty J, Mooney J, Toolan D, Sanchez-Miguel C, O’Loughlin A, McAuliffe A (2007) Study of the prevalence of Toxoplasma gondii and Neospora caninum and molecular evidence of Encephalitozoon (Septata) intestinalis infections in red foxes (Vulpes vulpes) in rural Ireland. Vet Parasitol 146(3–4):227–234

    Article  CAS  PubMed  Google Scholar 

  • Reperant LA, Hegglin D, Tanner I, Fischer C, Deplazes P (2009) Rodents as shared indicators for zoonotic parasites of carnivores in urban environments. Parasitology 136(3):329–337

    Article  CAS  PubMed  Google Scholar 

  • Romano A, Trisciuoglio A, Grande D, Ferroglio E (2009) Comparison of two PCR protocols for the detection of Neospora caninum DNA in rodents. Vet Parasitol 159(2):159–161

    Article  CAS  PubMed  Google Scholar 

  • Sobrino R, Dubey JP, Pabón M, Linarez N, Kwok OC, Millán J, Arnal MC, Luco DF, López-Gatius F, Thulliez P, Gortázar C, Almería S (2008) Neospora caninum antibodies in wild carnivores from Spain. Vet Parasitol 155(3–4):190–197

    Article  CAS  PubMed  Google Scholar 

  • Wanha K, Edelhofer R, Gabler-Eduardo C, Prosl H (2005) Prevalence of antibodies against Neospora caninum and Toxoplasma gondii in dogs and foxes in Austria. Vet Parasitol 128(3–4):189–193

    Article  CAS  PubMed  Google Scholar 

  • Wapenaar W, Jenkins MC, O’Handley RM, Barkema HW (2006) Neospora caninum-like oocysts observed in feces of free-ranging red foxes (Vulpes vulpes) and coyotes (Canis latrans). J Parasitol 92:1270–1274

    Article  CAS  PubMed  Google Scholar 

  • Weber JM, Dailly L (1998) Food habits and ranging behaviour of a group of farm cats (Felis catus) in a Swiss mountainous area. J Zool Lond 245:234–237

    Article  Google Scholar 

  • Werner H, Aspöck H, Janitschke K (1973) Serological studies on the occurrence of Toxoplasma gondii among wild living mammalian in eastern Austria. Zentralbl Bakteriol Orig A 224(2):257–263

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Scott Northrup for proofreading. We are very grateful to Univ. Prof. Dr. Anja Joachim and Mag. Hanna L. Worliczek (Veterinary Parasitology Vienna, University of Veterinary Medicine Vienna, Austria) for the contribution of Neospora caninum DNA. Furthermore, we gratefully acknowledge the excellent technical assistance of Mrs. Ingrid Feuereis.

Ethical standards

All voles were caught in 2004 in accordance with the Vorarlberger provincial law as published in Lg Bl. Nr. 50/2002.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Hassl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuehrer, HP., Blöschl, I., Siehs, C. et al. Detection of Toxoplasma gondii, Neospora caninum, and Encephalitozoon cuniculi in the brains of common voles (Microtus arvalis) and water voles (Arvicola terrestris) by gene amplification techniques in western Austria (Vorarlberg). Parasitol Res 107, 469–473 (2010). https://doi.org/10.1007/s00436-010-1905-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-010-1905-z

Keywords

Navigation