Skip to main content
Log in

Echinococcus multilocularis metacestode metabolites contain a cysteine protease that digests eotaxin, a CC pro-inflammatory chemokine

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

In many helminthic infections, eotaxin, a CC-chemokine, triggers the mobilization of eosinophils, thus, contributing to an elevated blood and periparasitic eosinophil level. Following an experimental intraperitoneal infection of C57BL6 mice with Echinococcus multilocularis metacestodes, however, we observed the absence of eosinophils in the peritoneal cavity and a low number of such cells in the blood of infected animals. Therefore, we carried out an explorative study to address the question why eosinophilia did not occur especially in the peritoneal cavity of such secondarily AE-infected mice. In an in vitro assay, we showed that metacestode antigens (in vitro generated vesicle fluid and E/S products) were able to proteolytically digest eotaxin. This effect was confirmed with semiquantitative Western blotting, which demonstrated a decreasing intensity of remaining eotaxin signals. Proteolysis of eotaxin was, thus, dose-dependent and proportional to the time of incubation with the metacestode antigens. Using appropriate inhibitors, the respective protease was identified as a cysteine protease, which required the presence of Ca++ as co-enzyme. A chromatographic fractionation procedure by successive separation of VF molecules using a superpose column and subsequently a MonoQ column mounted on an FPLC system allowed to yield a fraction, referred to us as fraction 6; containing the enriched cysteine protease, this fraction will be used for further molecular studies. Eotaxin inactivation by VF and E/S products may contribute to explain the absence of eosinophils within the peritoneal cavity of AE-secondary infected mice. Absent eosinophils, thus, may be a part of a series of events that maintain a low level of inflammation displayed within the peritoneal cavity of experimentally infected mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Reference

  • Ali-Khan Z, Siboo R (1980) Pathogenesis and host response in subcutaneous alveolar hydatidosis. II. Intense plasmacellular infiltration in the paracortex of draining lymph nodes. Z Parasitenkd 62:255–265

    Article  CAS  PubMed  Google Scholar 

  • Aumüller E, Schramm G, Gronow A, Brehm K, Gibbs BF, Doenhoff MJ, Haas H (2004) Echinococcus multilocularis metacestode extract triggers human basophils to release interleukin-4. Parasite Immunol 26:387–395

    Article  PubMed  Google Scholar 

  • Berger RB, Blackwell NM, Lass JH, Diaconu E, Pearlman E (2002) IL-4 and IL-13 regulation of ICAM-1 expression and eosinophil recruitment in Onchocerca volvulus keratitis. Invest Ophthalmol Vis Sci 43:2992–2997

    PubMed  Google Scholar 

  • Bresson-Hadni S, Liance M, Meyer JP, Houin R, Bresson JL, Vuitton DA (1990) Cellular immunity in experimental Echinococcus multilocularis infection. II. Sequential and comparative phenotypic study of the periparasitic mononuclear cells in resistant and sensitive mice. Clin Exp Immunol 82:378–383

    CAS  PubMed  Google Scholar 

  • Burden DJ, Bland AP, Hammet NC, Hughes DL (1983) Fasciola hepatica: migration of newly excysted juveniles in resistant rats. Exp Parasitol 56:277–288

    Article  CAS  PubMed  Google Scholar 

  • Culley FJ, Brown A, Conroy DM, Sabroe I, Pritchard DI, Williams TJ (2000) Eotaxin is specifically cleaved by hookworm metalloproteases preventing its action in vitro and in vivo. J Immunol 165:6447–6453

    CAS  PubMed  Google Scholar 

  • Dai WJ, Gottstein B (1999) Nitric oxide-mediated immunosuppression following murine Echinococcus multilocularis infection. Immunology 97:107–116

    Article  CAS  PubMed  Google Scholar 

  • Dai WJ, Hemphill A, Waldvogel A, Ingold K, Deplazes P, Mossmann H, Gottstein B (2001) Major carbohydrate antigen of Echinococcus multilocularis induces an immunoglobulin G response independent of alphabeta + CD4+ T cells. Infect Immun 69:6074–6083

    Article  CAS  PubMed  Google Scholar 

  • Dai WJ, Waldvogel A, Jungi T, Stettler M, Gottstein B (2003) Inducible nitric oxide synthase-deficiency in mice increases resistance to chronic infection with Echinococcus multilocularis. Immunology 10:238–244

    Article  Google Scholar 

  • Davies C, Goose J (1981) Killing of newly excysted juveniles of Fasciola hepatica in sensitized rats. Parasite Immunol 3:81–96

    Article  CAS  PubMed  Google Scholar 

  • Devouge M, Ali-Khan Z (1983) Intraperitoneal murine alveolar hydatidosis: relationship between the size of the larval cyst mass, immigrant inflammatory cells, splenomegaly and thymus involution. Tropenmed Parasitol 34:15–20

    CAS  PubMed  Google Scholar 

  • Eger A, Kirch A, Manfras B, Kern P, Schulz-Key H, Soboslay PT (2003) Pro-inflammatory (IL-1beta, IL-18) cytokines and IL-8 chemokine release by PBMC in response to Echinococcus multilocularis metacestode vesicles. Parasite Immunol 25:103–105

    Article  CAS  PubMed  Google Scholar 

  • Emery I, Liance M, Deriaud E, Vuitton DA, Houin R, Leclerc C (1996) Characterization of T-cell immune responses of Echinococcus multilocularis-infected C57BL/6J mice. Parasite Immunol 18:463–472

    Article  CAS  PubMed  Google Scholar 

  • Frosch PM, Frosch M, Pfister T, Schaad V, Bitter-Suermann D (1991) Cloning and characterization an immunodominant major surface antigen of Echinococcus multilocularis. Mol Biochem Parasitol 48:121–130

    Article  CAS  PubMed  Google Scholar 

  • Gottstein B (1992) Echinococcus multilocularis infection: Immunology and immunodiagnosis. Adv Parasitol 31:321–380

    Article  CAS  PubMed  Google Scholar 

  • Gottstein B, Hemphill A (1997) Immunopathology of echinococcosis. Chem Immunol 66:177–208

    Article  CAS  PubMed  Google Scholar 

  • Gottstein B, Hemphill A (2008) Echinococcus multilocularis: The parasite–host interplay. Exp Parasitol 119:447–452

    Article  CAS  PubMed  Google Scholar 

  • Gottstein B, Tsang VCW, Schantz PM (1986) Demonstration of species-specific and cross-reactive components of Taenia solium metacestode antigens. Am J Trop Med Hyg 35:308–313

    CAS  PubMed  Google Scholar 

  • Hemphill A, Gottstein B (1995) Immunology and morphology studies on the proliferation of in vitro cultivated Echinococcus multilocularis metacestodes. Parasitol Res 81:605–614

    Article  CAS  PubMed  Google Scholar 

  • Hernandez A, Nieto A (1994) Induction of protective immunity against murine secondary hydatidosis. Parasite Immunol 16:537–544

    Article  CAS  PubMed  Google Scholar 

  • Hubner MP, Manfras BJ, Margos MC, Eiffler D, Hoffmann WH, Schulz-Key H, Kern P, Soboslay PT (2006) Echinococcus multilocularis metacestodes modulate cellular cytokine and chemokine release by peripheral blood mononuclear cells in alveolar echinococcosis patients. Clin Exp Immunol 145:243–251

    Article  CAS  PubMed  Google Scholar 

  • Ingold K, Gottstein B, Hemphill A (1998) Identification of a novel laminated layer-associated protein in Echinococcus multilocularis metacestodes. Parasitology 116:363–372

    Article  CAS  PubMed  Google Scholar 

  • Ingold K, Gottstein B, Hemphill A (2000) High molecular weight glycans are major structural elements associated with the laminated layer of in vitro cultivated Echinococcus multilocularis metacestodes. Int J Parasitol 30:207–214

    Article  CAS  PubMed  Google Scholar 

  • Ito A, Schantz PM, Wilson JF (1995) Em18, a new serodiagnostic marker for differentiation of active and inactive cases of alveolar hydatid disease. Am J Trop Med Hyg 52:41–44

    CAS  PubMed  Google Scholar 

  • Kizaki T, Kobayashi S, Ogasawara K, Day NK, Good RA, Onoé K (1991) Immune suppression induced by protoscoleces of Echinococcus multilocularis in mice. Evidence for the presence of CD8dull suppressor cells in spleens of mice intraperitoneally infected with E. multilocularis. J Immunol 147:1659–1666

    CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lawton P, Hemphill A, Deplazes P, Gottstein B (1997) Sarciron ME Echinococcus multilocularis metacestodes: immunological and immunocytochemical analysis of the relationships between alkaline phosphatase and the Em2 antigen. Exp Parasitol 87:142–149

    Article  CAS  PubMed  Google Scholar 

  • Machado ER, Ueta MT, Lourenço EV, Anibal FF, Sorgi CA, Soares EG, Roque-Barreira MC, Medeiros AI, Faccioli LH (2005) Leukotrienes play a role in the control of parasite burden in murine strongyloidiasis. J Immunol 175:3892–3899

    CAS  PubMed  Google Scholar 

  • Martin LB, Kita H, Leiferman KM, Gleich GJ (1996) Eosinophils in allergy: role in disease, degranulation, and cytokines. Int Arch Allergy Immunol 109:207–215

    Article  CAS  PubMed  Google Scholar 

  • Mejri N, Gottstein B (2006) Intraperitoneal Echinococcus multilocularis infection in C57BL/6 mice affects CD40 and B7 costimulator expression on peritoneal macrophages and impairs peritoneal T cell activation. Parasite Immunol 28:373–385

    Article  CAS  PubMed  Google Scholar 

  • Mishra A, Hogan SP, Lee JJ, Foster PS, Rothenberg ME (1999) Fundamental signals that regulate eosinophil homing to the gastrointestinal tract. J Clin Invest 103:1719–1727

    Article  CAS  PubMed  Google Scholar 

  • Mishra A, Hogan SP, Brandt EB, Wagner N, Crossman MW, Foster PS, Rothenberg ME (2002) Enterocyte expression of the eotaxin and interleukin-5 transgenes induces compartmentalized dysregulation of eosinophil trafficking. J Biol Chem 277:4406–4412

    Article  CAS  PubMed  Google Scholar 

  • Muller N, Vogel M, Gottstein B, Scholle A, Seebeck T (1989) Plasmid vector for overproduction and export of recombinant protein in Escherichia coli: efficient one-step purification of a recombinant antigen from Echinococcus multilocularis (Cestoda). Gene 75:329–334

    Article  CAS  PubMed  Google Scholar 

  • Ovington KS, Behm CA (1997) The enigmatic eosinophil: investigation of the biological role of eosinophils in parasitic helminth infection. Mem Inst Oswaldo Cruz 2:93–104

    Google Scholar 

  • Persat F, Vincent C, Schmitt D, Mojon M (1996) Inhibition of human peripheral blood mononuclear cell proliferative response by glycosphingolipids from metacestodes of Echinococcus multilocularis. Infect Immun 64:3682–3687

    CAS  PubMed  Google Scholar 

  • Saraswathi TR, Nalinkumar S, Ranganathan K, Umadevi R, Elizabeth J (2003) Eosinophils in health and disease. J Oral Maxillofac Pathol 7:31–33

    Google Scholar 

  • Sato C, Furuya K (1994) Isolation and characterization of a diagnostic polysaccharide antigen from larval Echinococcus multilocularis. Jpn J Med Sci Biol 47:65–71

    CAS  PubMed  Google Scholar 

  • Siles-Lucas Mdel M, Gottstein B (2003) The 14-3-3 protein: a key molecule in parasites as in other organisms. Trends Parasitol 19:575–581

    Article  PubMed  Google Scholar 

  • Sterla S, Sato H, Nieto A (1999) Echinococcus granulosus human infection stimulates low avidity anticarbohydrate IgG2 and high avidity antipeptide IgG4 antibodies. Parasite Immunol 21:27–34

    Article  CAS  PubMed  Google Scholar 

  • Terrazas LI, Walsh KL, Piskorska D, McGuire E, Harn DA (2001) The schistosome oligosaccharide lacto-N-neotetraose expands Gr1+ cells that secrete anti-inflammatory cytokines and inhibit proliferation of naive CD4+ cells: a potential mechanism for immune polarization in helminth infections. J Immunol 167:5294–5303

    CAS  PubMed  Google Scholar 

  • Vuitton DA, Bresson-Hadni S, Laroche L, Kaiserlian D, Guerret-Stocker S, Bresson JL, Gillet M (1989) Cellular immune response in Echinococcus multilocularis infection in humans. II. Natural killer cell activity and cell subpopulations in the blood and in the periparasitic granuloma of patients with alveolar echinococcosis. Clin Exp Immunol 78:67–74

    CAS  PubMed  Google Scholar 

  • Walker M, Baz A, Dematteis S, Stettler M, Gottstein B, Schaller J, Hemphill A (2004) Isolation and characterization of a secretory component of Echinococcus multilocularis metacestodes potentially involved in modulating the host–parasite interface. Infect Immun 72:527–536

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi Y, Hayashi Y, Sugama Y, Miura Y, Kasahara T, Kitamura S, Torisu M, Mita S, Tominaga A, Takatsu K (1988) Highly purified murine interleukin 5 (IL-5) stimulates eosinophil function and prolongs in vitro survival. IL-5 as an eosinophil chemotactic factor. J Exp Med 167:1737–1742

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Gottstein.

Additional information

This work was funded by the Swiss National Research Foundation (grant no. 31003A-125990/1).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mejri, N., Gottstein, B. Echinococcus multilocularis metacestode metabolites contain a cysteine protease that digests eotaxin, a CC pro-inflammatory chemokine. Parasitol Res 105, 1253–1260 (2009). https://doi.org/10.1007/s00436-009-1549-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-009-1549-z

Keywords

Navigation