Skip to main content

Advertisement

Log in

Prediction of radiation pneumonitis in lung cancer patients: a systematic review

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Factors prediction in the development of radiation pneumonitis (RP) remains unclear. A meta-analysis about this was performed.

Materials

Articles were searched in February 2012 from PubMed, EMBASE, Cochrane Library and CNKI (Chinese Journal Full-text Database) using the keywords “lung cancer,” “radiation pneumonitis” or “radiation lung injury.” The outcome was the RP incidence. We pooled the data using RevMan 5.1 software and tested the statistical heterogeneity.

Results

We included the following factors: age, gender, weight loss, smoking history, complications, performance status, pre-radiation therapy (RT) pulmonary function, TNM, histological type, tumor location, pre-RT surgery, RT combined with chemotherapy (RCT), RT/RCT combined with amifostine, plasma end/pre-RT TGF-β1 ratio and irradiation volume. The significant risk factors for RP ≥ grade 2 were patients with chronic lung disease, tumor located in the middle or lower lobe, without pre-RT surgery, RCT, plasma end/pre-RT TGF-β1 ratio ≥1 and gross tumor volume (GTV). Following factors were identified significant for RP, including tumor located not in the upper lobe, smokers, combined with chronic lung diseases or diabetes mellitus, low pre-RT pulmonary function, RCT, RT/RCT without amifostine and plasma end/pre-RT TGF-β1 ratio ≥1. Dose-volume parameters included the average of mean lung dose (MLD) of disease lung, GTV and V 5, V 10 (≥34 %), V 20 (≥25 %), V 30 (≥18 %) of bilateral lung.

Conclusions

More attention should be paid to the levels of patients’ pulmonary function, plasma TGF-β1 and dose-volume histogram (DVH). Rigorous studies are needed to identify the relationship between the above-mentioned factors and RP ≥grade 1 or 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abid SH, Malhotra V, Perry MC (2001) Radiation-induced and chemotherapy-induced pulmonary injury. Curr Opin Oncol 13(4):242–248

    Article  PubMed  CAS  Google Scholar 

  • An JY, Kwon SJ, Lee YS et al (2004) Factors predicting the development of radiation pneumonitis in the patients receiving radiation therapy for lung cancer. Tuberc Respir Dis 56(1):40–50

    Google Scholar 

  • Anscher MS, Kong FM, Andrews K et al (1998) Plasma transforming growth factor beta1 as a predictor of radiation pneumonitis. Int J Radiat Oncol Biol Phys 41(5):1029–1035

    Article  PubMed  CAS  Google Scholar 

  • Antonadou D (2002) Radiotherapy or chemotherapy followed by radiotherapy with or without amifostine in locally advanced lung cancer. Semin Radiat Oncol 12(1 Suppl 1):50–58

    Article  PubMed  Google Scholar 

  • Antonadou D, Coliarakis N, Synodinou M et al (2001) Randomized phase III trial of radiation treatment ± amifostine in patients with advanced-stage lung cancer. Int J Radiat Oncol Biol Phys 51(4):915–922

    Article  PubMed  CAS  Google Scholar 

  • Antonadou D, Petridis A, Synodinou M et al (2003) Amifostine reduces radiochemotherapy-induced toxicities in patients with locally advanced non-small cell lung cancer. Semin Oncol 30(6 Suppl 18):2–9

    Article  PubMed  CAS  Google Scholar 

  • Barriger RB, Fakiris AJ, Hanna N, Yu M, Mantravadi P, Mcgarry RC (2010) Dose-volume analysis of radiation pneumonitis in non-small-cell lung cancer patients treated with concurrent cisplatinum and etoposide with or without consolidation docetaxel. Int J Radiat Oncol Biol Phys 78(5):1381–1386

    Article  PubMed  CAS  Google Scholar 

  • Barriger RB, Forquer JA, Brabham JG et al (2012) A dose-volume analysis of radiation pneumonitis in non-small cell lung cancer patients treated with stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys 1(82):457–462

    Article  Google Scholar 

  • Cai Y, Zhou D (2011) Analysis of risk factors of radiation pneumonitis in non-small cell lung cancer. Chin J Nosocomiol 21(16):3357–3359 (article in Chinese)

    CAS  Google Scholar 

  • Chang DT, Olivier KR, Morris CG et al (2006) The impact of heterogeneity correction on dosimetric parameters that predict for radiation pneumonitis. Int J Radiat Oncol Biol Phys 65(1):125–131

    Article  PubMed  Google Scholar 

  • Choi NC (2003) Radioprotective effect of amifostine in radiation pneumonitis. Semin Oncol 30:10–17

    Article  PubMed  CAS  Google Scholar 

  • Claude L, Pérol D, Ginestet C et al (2004) A prospective study on radiation pneumonitis following conformal radiation therapy in non-small-cell lung cancer: clinical and dosimetric factors analysis. Radiother Oncol 71(2):175–181

    Article  PubMed  Google Scholar 

  • Clenton SJ, Fisher PM, Conway J, Kirkbride P, Hatton MQ (2005) The use of lung dose-volume histograms in predicting post-radiation pneumonitis after non-conventionally fractionated radiotherapy for thoracic carcinoma. Clin Oncol (R Coll Radiol) 17(8):599–603

    Article  CAS  Google Scholar 

  • Dang J, Li G, Lu X et al (2010) Analysis of related factors associated with radiation pneumonitis in patients with locally advanced non-small-cell lung cancer treated with three-dimensional conformal radiotherapy. J Cancer Res Clin Oncol 136(8):1169–1178

    Article  PubMed  Google Scholar 

  • Das SK, Chen S, Deasy JO, Zhou S, Yin FF, Marks LB (2008) Combining multiple models to generate consensus: application to radiation-induced pneumonitis prediction. Med Phys 35(11):5098–5109

    Article  PubMed  Google Scholar 

  • De Petris L, Lax I, Sirzén F, Friesland S (2005) Role of gross tumor volume on outcome and of dose parameters on toxicity of patients undergoing chemoradiotherapy for locally advanced non-small cell lung cancer. Med Oncol 22(4):375–381

    Article  PubMed  Google Scholar 

  • De Ruysscher D, Wanders R, van Haren E et al (2008) HI-CHART: a phase I/II study on the feasibility of high-dose continuous hyperfractionated accelerated radiotherapy in patients with inoperable non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 71(1):132–138

    Article  PubMed  Google Scholar 

  • Evans ES, Kocak Z, Zhou SM et al (2006) Does transforming growth factor-beta1 predict for radiation-induced pneumonitis in patients treated for lung cancer? Cytokine 5(3–4):186–192

    Article  Google Scholar 

  • Fay M, Tan A, Fisher R, Mac Manus M, Wirth A, Ball D (2005) Dose-volume histogram analysis as predictor of radiation pneumonitis in primary lung cancer patients treated with radiotherapy. Int J Radiat Oncol Biol Phys 61(5):1355–1363

    Article  PubMed  Google Scholar 

  • Fu XL, Huang H, Bentel G et al (2001) Predicting the risk of symptomatic radiation-induced lung injury using both the physical and biologic parameters V(30) and transforming growth factor beta. Int J Radiat Oncol Biol Phys 50(4):899–908

    Article  PubMed  CAS  Google Scholar 

  • Fujino M, Shirato H, Onishi H et al (2006) Characteristics of patients who developed radiation pneumonitis requiring steroid therapy after stereotactic irradiation for lung tumors. Cancer J 12(1):41–46

    Article  PubMed  Google Scholar 

  • Hildebrandt MA, Komaki R, Liao Z et al (2010) Genetic variants in inflammation-related genes are associated with radiation-induced toxicity following treatment for non-small cell lung cancer. PLoS One 5(8):e12402

    Article  PubMed  Google Scholar 

  • Hope AJ, Lindsay PE, EI Naqa I et al (2006) Modeling radiation pneumonitis risk with clinical, dosimetric, and spatial parameters. Int J Radiat Oncol Biol Phys 65(1):112–124

    Article  PubMed  Google Scholar 

  • Huang EX, Hope AJ, Lindsay PE et al (2011) Heart irradiation as a risk factor for radiation pneumonitis. Acta Oncol 50(1):51–60

    Article  PubMed  Google Scholar 

  • Inoue A, Kunitoh H, Sekine I, Sumi M, Tokuuye K, Saijo N (2001) Radiation pneumonitis in lung cancer patients: a retrospective study of risk factors and the long-term prognosis. Int J Radiat Oncol Biol Phys 49(3):649–655

    Article  PubMed  CAS  Google Scholar 

  • Ishii Y, Kitamura S (1999) Soluble intercellular adhesion molecule-1 as an early detection marker for radiation pneumonitis. Eur Respir J 13(4):733–738

    Article  PubMed  CAS  Google Scholar 

  • Kim TH, Cho KH, Pyo HR et al (2005) Dose-volumetric parameters for predicting severe radiation pneumonitis after three-dimensional conformal radiation therapy for lung cancer. Radiology 235(1):208–215

    Article  PubMed  Google Scholar 

  • Kim JY, Kim YS, Kim YK et al (2009) The TGF-beta1 dynamics during radiation therapy and its correlation to symptomatic radiation pneumonitis in lung cancer patients. Radiat Oncol 4:59

    Article  PubMed  Google Scholar 

  • Kobayashi H, Uno T, Isobe K et al (2010) Radiation pneumonitis following twice-daily radiotherapy with concurrent carboplatin and paclitaxel in patients with stage III non-small-cell lung cancer. Jpn J Clin Oncol 40(5):464–469

    Article  PubMed  Google Scholar 

  • Kocak Z, Yu X, Zhou SM et al (2005) The impact of pre-radiotherapy surgery on radiation-induced lung injury. Clin Oncol (R Coll Radiol) 17(4):210–216

    Article  CAS  Google Scholar 

  • Komaki R, Lee JS, Kaplan B et al (2002) Randomized phase III study of chemoradiation with or without amifostine for patients with favorable performance status inoperable stage II-III non-small cell lung cancer: preliminary results. Semin Radiat Oncol 12(1 Suppl 1):46–49

    PubMed  CAS  Google Scholar 

  • Komaki R, Lee JS, Milas L et al (2004) Effects of amifostine on acute toxicity from concurrent chemotherapy and radiotherapy for inoperable non-small cell lung cancer: report of a randomized comparative trial. Int J Radiat Oncol Biol Phys 58(5):1369–1377

    Article  PubMed  CAS  Google Scholar 

  • Kong FM, Anscher MS, Sporn TA et al (2001) Loss of heterozygosity at the mannose 6-phosphate insulin-like growth factor 2 receptor (M6P/IGF2R) locus predisposes patients to radiation-induced lung injury. Int J Radiat Oncol Biol Phys 49(1):35–41

    Article  PubMed  CAS  Google Scholar 

  • Kong FM, Hayman JA, Griffith KA et al (2006) Final toxicity results of a radiation-dose escalation study in patients with non-small-cell lung cancer (NSCLC): predictors for radiation pneumonitis and fibrosis. Int J Radiat Oncol Biol Phys 65(4):1075–1086

    Article  PubMed  Google Scholar 

  • Koto M, Tsujii H, Yamamoto N, Nishimura H, Yamada S, Miyamoto T (2007) Dosimetric factors used for thoracic X-ray radiotherapy are not predictive of the occurrence of radiation pneumonitis after carbon-ion radiotherapy. Tohoku J Exp Med 213(2):149–156

    Article  PubMed  Google Scholar 

  • Lee SW, Choi EK, Lee JS et al (2003) Phase II study of three-dimensional conformal radiotherapy and concurrent mitomycin-C, vinblastine, and cisplatin chemotherapy for Stage III locally advanced, unresectable, non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 56(4):996–1004

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Zhu SC, Chi ZF (2007) Analysis on the risk factors of radiation pneumonitis after three-dimensional radiotherapy in lung cancer patients. Cancer Res Prev Treat 34(8):586–589 (article in Chinese)

    Google Scholar 

  • Mak RH, Alexander BM, Asomaning K, et al (2011) A single-nucleotide polymorphism in the MTHFR (methylene tetrahydrofolate reductase) gene is associated with risk of radiation pneumonitis in lung cancer patients treated with thoracic radiation therapy. Cancer. [Epub ahead of print]

  • Makimoto T, Tsuchiya S, Hayakawa K, Saitoh R, Mori M (1999) Risk factors for severe radiation pneumonitis in lung cancer. Jpn J Clin Oncol 29(4):192–197

    Article  PubMed  CAS  Google Scholar 

  • Mao J, Kocak Z, Zhou S et al (2007) The impact of induction chemotherapy and the associated tumor response on subsequent radiation-related changes in lung function and tumor response. Int J Radiat Oncol Biol Phys 67(5):1360–1369

    Article  PubMed  Google Scholar 

  • Matsuno Y, Satoh H, Ishikawa H, Kodama T, Ohtsuka M, Sekizawa K (2006) Simultaneous measurements of KL-6 and SP-D in patients undergoing thoracic radiotherapy. Med Oncol 23(1):75–82

    Article  PubMed  CAS  Google Scholar 

  • Mehta V (2004) Open label multicenter trial of subcutaneous amifostine (Ethyol) in the prevention of radiation induced esophagitis and pneumonitis in patients with measurable, unresectable non-small cell lung cancer. Semin Oncol 31:42–46

    Article  PubMed  CAS  Google Scholar 

  • Monson JM, Stark P, Reilly JJ et al (1998) Clinical radiation pneumonitis and radiographic changes after thoracic radiation therapy for lung carcinoma. Cancer 82(5):842–850

    Article  PubMed  CAS  Google Scholar 

  • Nakayama Y, Makino S, Fukuda Y, Min KY, Shimizu A, Ohsawa N (1996) Activation of lavage lymphocytes in lung injuries caused by radiotherapy for lung cancer. Int J Radiat Oncol Biol Phys 34(2):459–467

    Article  PubMed  CAS  Google Scholar 

  • Novakova-Jiresova A, Van Gameren MM, Coppes RP, Kampinga HH, Groen HJ (2004) Transforming growth factor-beta plasma dynamics and post-irradiation lung injury in lung cancer patients. Radiother Oncol 71(2):183–189

    Article  PubMed  CAS  Google Scholar 

  • Oh D, Ahn YC, Park HC, do Lim H, Han Y (2009) Prediction of radiation pneumonitis following high-dose thoracic radiation therapy by 3 Gy/fraction for non-small cell lung cancer: analysis of clinical and dosimetric factors. Jpn J Clin Oncol 39(3):151–157

    Article  PubMed  Google Scholar 

  • Parashar B, Edwards A, Mehta R et al (2011) Chemotherapy significantly increases the risk of radiation pneumonitis in radiation therapy of advanced lung cancer. Am J Clin Oncol 34(2):160–164

    PubMed  Google Scholar 

  • Piotrowski T, Matecka-Nowak M, Milecki P (2005) Prediction of radiation pneumonitis: dose-volume histogram analysis in 62 patients with non-small cell lung cancer after three-dimensional conformal radiotherapy. Neoplasma 52(1):56–62

    PubMed  CAS  Google Scholar 

  • Ramella S, Trodella L, Mineo TC et al (2010) Adding ipsilateral V20 and V30 to conventional dosimetric constraints predicts radiation pneumonitis in stage IIIA-B NSCLC treated with combined-modality therapy. Int J Radiat Oncol Biol Phys 76(1):110–115

    Article  PubMed  Google Scholar 

  • Rancati T, Ceresoli GL, Gagliardi G et al (2003) Factors predicting radiation pneumonitis in lung cancer patients: a retrospective study. Radiother Oncol 67(3):275–283

    Article  PubMed  Google Scholar 

  • Robnett TJ, Machtay M, Vines EF et al (2000) Factors predicting severe radiation pneumonitis in patients receiving definitive chemoradiation for lung cancer. Int J Radiat Oncol Biol Phys 48(1):89–94

    Article  PubMed  CAS  Google Scholar 

  • Roeder F, Friedrich J, Timke C et al (2010) Correlation of patient-related factors and dose-volume histogram parameters with the onset of radiation pneumonitis in patients with small cell lung cancer. Strahlenther Onkol 186(3):149–156

    Article  PubMed  Google Scholar 

  • Saynak M, Higginson DS, Morris DE, Marks LB (2010) Current status of postoperative radiation for non-small-cell lung cancer. Semin Radiat Oncol 20:192–200

    Article  PubMed  Google Scholar 

  • Schild SE, Stella PJ, Geyer SM et al (2003) The outcome of combined-modality therapy for stage III non-small-cell lung cancer in the elderly. J Clin Oncol 21(17):3201–3206

    Article  PubMed  CAS  Google Scholar 

  • Schulz KF, Altman DG, Moher D (2010) CONSORT 2010 Statement: updated guidelines for reporting parallel group randomised trials. J Pharmacol Pharmacother 1(2):100–107

    Article  PubMed  Google Scholar 

  • Segawa Y, Takigawa N, Kataoka M, Takata I, Fujimoto N, Ueoka H (1997) Risk factors for development of radiation pneumonitis following radiation therapy with or without chemotherapy for lung cancer. Int J Radiat Oncol Biol Phys 39(1):91–98

    Article  PubMed  CAS  Google Scholar 

  • Shi A, Zhu G, Wu H, Yu R, Li F, Xu B (2010) Analysis of clinical and dosimetric factors associated with severe acute radiation pneumonitis in patients with locally advanced non-small cell lung cancer treated with concurrent chemotherapy and intensity-modulated radiotherapy. Radiat Oncol 5:35

    Article  PubMed  Google Scholar 

  • Song H, Yu JM (2009) Effect of diabetes mellitus on the development of radiation pneumonitis in patients with non-small cell lung cancer. Chin J Oncol 1:45–47 (article in Chinese)

    Google Scholar 

  • Stang A (2010) Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25(9):603–605

    Article  PubMed  Google Scholar 

  • Takahashi H, Imai Y, Fujishima T et al (2001) Diagnostic significance of surfactant proteins A and D in sera from patients with radiation pneumonitis. Eur Respir J 17(3):481–487

    Article  PubMed  CAS  Google Scholar 

  • Tsujino K, Hirota S, Endo M et al (2003) Predictive value of dose-volume histogram parameters for predicting radiation pneumonitis after concurrent chemoradiation for lung cancer. Int J Radiat Oncol Biol Phys 55(1):110–115

    Article  PubMed  Google Scholar 

  • Tucker SL, Jin H, Wei X et al (2010) Impact of toxicity grade and scoring system on the relationship between mean lung dose and risk of radiation pneumonitis in a large cohort of patients with non-small cell lung cancer. Int J Radiat Oncol Biol Phys 77(3):691–698

    Article  PubMed  Google Scholar 

  • Uno T, Isobe K, Kawakami H et al (2006) Dose-volume factors predicting radiation pneumonitis in patients receiving salvage radiotherapy for postlobectomy locoregional recurrent non-small-cell lung cancer. Int J Clin Oncol 11(1):55–59

    Article  PubMed  Google Scholar 

  • Vinogradskiy Y, Tucker SL, Liao Z, Martel MK (2012) Investigation of the relationship between gross tumor volume location and pneumonitis rates using a large clinical database of non-small-cell lung cancer patients. Int J Radiat Oncol Biol Phys 82(5):1650–1658

    Google Scholar 

  • Vogelius IS, Bentzen S (2010) Clinical factors associated with risk of radiation pneumonitis: a literature based meta-analysis. Radiother Oncol 96:S125–S126

    Google Scholar 

  • Vujaskovic Z, Groen HJ (2000) TGF-beta, radiation-induced pulmonary injury and lung cancer. Int J Radiat Biol 76(4):511–516

    Article  PubMed  CAS  Google Scholar 

  • Wang LW, Fu XL, Clough R et al (2000) Can angiotensin-converting enzyme inhibitors protect against symptomatic radiation pneumonitis. Radiat Res 153(4):405–410

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Wang L, Feng Q et al (2005) Factors predicting radiation toxicity in the treatment of three-dimensional conformal radiotherapy for lung cancer. Chin J Lung Cancer 8(5):454–458 (article in Chinese)

    PubMed  Google Scholar 

  • Wang WH, Bao Y, Chen M et al (2006) Initial outcome of induction chemotherapy with weekly paclitaxel followed by three-dimensional conformal radiotherapy and concurrent weekly paclitaxel for stage III non-small cell lung cancer. Chin J Cancer 25(10):1279–1283 (article in Chinese)

    PubMed  Google Scholar 

  • Wang J, Qiao XY, Cao YK et al (2009) Analysis of correlated factors of radiation pneumonitis after three-dimensional conformal radiotherapy for non-small cell lung cancer. Chin J Clin Oncol 36(19):1086–1089 (article in Chinese)

    Google Scholar 

  • Wang J, Qiao XY, Lu FH et al (2010) TGF-beta1 in serum and induced sputum for predicting radiation pneumonitis in patients with non-small cell lung cancer after radiotherapy. Chin J Cancer 29(3):325–329 (article in Chinese)

    Article  PubMed  Google Scholar 

  • Watanabe H, Suga A, Tsuchihashi Y et al (1995) Clinical study of radiation pneumonitis over 10 years. Nihon Kyobu Shikkan Gakkai Zasshi 33(4):384–388

    PubMed  CAS  Google Scholar 

  • Xiao C, Ding HJ, Feng LC, Qu BL, Dou YQ (2010) Efficacy of Liangxue Jiedu Huoxue Decoction in prevention of radiation pneumonitis: a randomized controlled trial. J Chin Integr Med 8(7):624–628 (article in Chinese)

    Article  PubMed  Google Scholar 

  • Xie SX, Li WX, Lin YR, Zou WC (2006) Three-dimensional conformal hypofractionated radiotherapy for non-small-cell lung cancer. Chin oncol 16(12):1034–1037 (article in Chinese)

    Google Scholar 

  • Yamada M, Kudoh S, Hirata K, Nakajima T, Yoshikawa J (1998) Risk factors of pneumonitis following chemoradiotherapy for lung cancer. Eur J Cancer 34(1):71–75

    Article  PubMed  CAS  Google Scholar 

  • Yamano M, Ogino H, Shibamoto Y, Horii N (2007) Relationship between radiation pneumonitis and prognosis in patients with primary lung cancer treated by radiotherapy. Kurume Med J 54(3–4):57–63

    Article  PubMed  Google Scholar 

  • Yin M, Liao Z, Huang YJ et al (2011) Polymorphisms of homologous recombination genes and clinical outcomes of non-small cell lung cancer patients treated with definitive radiotherapy. PLoS One 6(5):e20055

    Article  PubMed  CAS  Google Scholar 

  • Yorke ED, Jackson A, Rosenzweig KE, Braban L, Leibel SA, Ling CC (2005) Correlation of dosimetric factors and radiation pneumonitis for non-small-cell lung cancer patients in a recently completed dose escalation study. Int J Radiat Oncol Biol Phys 63(3):672–682

    Article  PubMed  Google Scholar 

  • Yu X, Yang Z, Wang G et al (2011) Correlative factor analysis of radiation pneumonitis in 62 locally advanced NSCLC cases treated with 3DCRT. Mod Oncol 19(6):1120–1122 (article in Chinese)

    Google Scholar 

  • Zhang B, Qiao TK (2010) Predictors of pulmonary lesion induced by three dimensional conformal radiotherapy combined with chemotherapy of np for iii stage non-small cell lung cancer. Cancer Res Prev Treat 37(5):578–581 (article in Chinese)

    Google Scholar 

  • Zhang L, Yang M, Bi N et al (2010) ATM polymorphisms are associated with risk of radiation-induced pneumonitis. Int J Radiat Oncol Biol Phys 77(5):1360–1368

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Wang L, Ji W et al (2007) Association between plasma angiotensin-converting enzyme level and radiation pneumonitis. Cytokine 37(1):71–75

    Article  PubMed  CAS  Google Scholar 

  • Zhong J, Liu J, Chen WX (2007) Relationship between the plasma transforming growth factor-β1 levels and radiation-induced lung injury. Pract J cancer 22(5):468–471 (article in Chinese)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Hong-yan Xiong (Epidemiology Department, Third Military Medical University, China) for the guidance of the statistical method and Dr. Rong-xia Liao (Medical English Department, Third Military Medical University, China) for the critical reading and revision of the manuscript. We also wish to appreciate the library of the Third Military Medical University for literature searches. This research was supported by the Key projects for Natural Science Foundation of Chongqing (Jian-guo Sun, No. cstc2012jjB0076) and Clinical Research Foundation of Third Military Medical University (Jian-guo Sun, No. 2011D264).

Conflicts of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Guo Sun or Zheng-Tang Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, XJ., Sun, JG., Sun, J. et al. Prediction of radiation pneumonitis in lung cancer patients: a systematic review. J Cancer Res Clin Oncol 138, 2103–2116 (2012). https://doi.org/10.1007/s00432-012-1284-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-012-1284-1

Keywords

Navigation