Skip to main content

Advertisement

Log in

Missense polymorphisms of PTPRJ and PTPN13 genes affect susceptibility to a variety of human cancers

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

We investigated the association between incidence of various cancers and four single nucleotide polymorphisms (SNPs), two each in two protein tyrosine phosphatase (PTP) genes, PTPRJ and PTPN13, by a case–control study conducted in Japan.

Methods

The study samples comprised 819 cancer-free controls and 569 cancer cases including lung, head and neck, colorectal, and esophageal cancers.

Results

Compared with the major homozygotes at the Arg326Gln SNP in PTPRJ, a likely homologue of the mouse SCC1 (susceptible to colon cancer), Arg/Gln or Gln/Gln genotypes exhibited an increased colorectal cancer risk with adjusted odds ratios (aOR) of 1.71 (P = 0.021) and 3.74 (P = 4.14 × 10−4), respectively. Increased risks were observed with one or more of the combination genotypes of Gln276Pro and Arg326Gln in PTPRJ for most cancer types (aOR range 10.13–55.08, Bonferroni-corrected P = 0.0454–7.20 × 10−9). In the PTPN13, major homozygotes of Ile1522Met showed an increased risk for lung squamous cell carcinomas (aOR 1.86), compared to the heterozygotes. Increased risks were observed with at least one of the combination genotypes of the two SNPs, Ile1522Met and Tyr2081Asp, for all but esophageal cancer examined (aOR 3.36–13.75), compared with double heterozygotes. Moreover, these high risks were seen also when all cancer cases were combined (aOR 1.81–6.84).

Conclusions

PTPRJ and PTPN13 SNPs were found to influence susceptibility to a wide spectrum of cancers. Because allelic frequencies of these SNPs are relatively common in many ethnic groups, these findings are worthy of further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abaan OD, Toretsky JA (2008) PTPL1: a large phosphatase with a split personality. Cancer Metastasis Rev 27:205–214

    Article  CAS  PubMed  Google Scholar 

  • Alitalo K, Tammela T, Petrova TV (2005) Lymphangiogenesis in development and human disease. Nature 438:946–953

    Article  CAS  PubMed  Google Scholar 

  • Andersen JN, Mortensen OH, Peters GH, Drake PG, Iversen LF, Olsen OH, Jansen PG, Andersen HS, Tonks NK, Møller NP (2001) Structural and evolutionary relationships among protein tyrosine phosphatase domains. Mol Cell Biol 21:7117–7136

    Article  CAS  PubMed  Google Scholar 

  • Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  CAS  PubMed  Google Scholar 

  • Cuppen E, Nagata S, Wieringa B, Hendriks W (1997) No evidence for involvement of mouse protein–tyrosine phosphatase-BAS-like Fas-associated phosphatase-1 in Fas-mediated apoptosis. J Biol Chem 272:30215–30220

    Article  CAS  PubMed  Google Scholar 

  • de la Fuente-García MA, Nicolás JM, Freed JH, Palou E, Thomas AP, Vilella R, Vives J, Gayá A (1998) CD148 is a membrane protein tyrosine phosphatase present in all hematopoietic lineages and is involved in signal transduction on lymphocytes. Blood 91:2800–2809

    PubMed  Google Scholar 

  • Erdmann KS (2003) The protein tyrosine phosphatase PTP-basophil/basophil-like interacting proteins and molecular functions. Eur J Biochem 270:4789–4798

    Article  CAS  PubMed  Google Scholar 

  • Erichsen HC, Chanock SJ (2004) SNPs in cancer research and treatment. Br J Cancer 90:747–751

    Article  CAS  PubMed  Google Scholar 

  • Foehr ED, Lorente G, Vincent V, Nikolich K, Urfer R (2005) FAS associated phosphatase (FAP-1) blocks apoptosis of astrocytomas through dephosphorylation of FAS. J Neurooncology 74:241–248

    Article  CAS  Google Scholar 

  • Freiss G, Vignon F (2004) Protein tyrosine phosphatases and breast cancer. Crit Rev Oncol Hematol 52:9–17

    PubMed  Google Scholar 

  • Grazia Lampugnani M, Zanetti A, Corada M, Takahashi T, Balconi G, Breviario F, Orsenigo F, Cattelino A, Kemler R, Daniel TO, Dejana E (2003) Contact inhibition of VEGF-induced proliferation requires vascular endothelial cadherin, beta-catenin, and the phosphatase DEP-1/CD148. J Cell Biol 161:793–804

    Article  PubMed  Google Scholar 

  • Gross C, Heumann R, Erdmann KS (2001) The protein kinase C-related kinase PRK2 interacts with the protein tyrosine phosphatase PTP-BL via a novel PDZ domain binding motif. FEBS Lett 496:101–104

    Article  CAS  PubMed  Google Scholar 

  • Herrmann L, Dittmar T, Erdmann KS (2003) The protein tyrosine phosphatase PTP-BL associates with the midbody and is involved in the regulation of cytokinesis. Mol Cell Biol 14:230–240

    Article  CAS  Google Scholar 

  • Iuliano R, Le Pera I, Cristofaro C, Baudi F, Arturi F, Pallante P, Martelli ML, Trapasso F, Chiariotti L, Fusco A (2004) The tyrosine phosphatase PTPRJ/DEP-1 genotype affects thyroid carcinogenesis. Oncogene 23:8432–8438

    Article  CAS  PubMed  Google Scholar 

  • Ivanov VN, Ronai Z, Hei TK (2006) Opposite roles of FAP-1 and dynamin in the regulation of Fas (CD95) translocation to the cell surface and susceptibility to Fas ligand-mediated apoptosis. J Biol Chem 281:1840–1852

    Article  CAS  PubMed  Google Scholar 

  • Kachel N, Erdmann KS, Kremer W, Wolff P, Gronwald W, Heumann R, Kalbitzer HR (2003) Structure determination and ligand interactions of the PDZ2b domain of PTP-Bas (hPTP1E): splicing-induced modulation of ligand specificity. J Mol Biol 334:143–155

    Article  CAS  PubMed  Google Scholar 

  • Kellie S, Craggs G, Bird IN, Jones GE (2004) The tyrosine phosphatase DEP-1 induces cytoskeletal rearrangements, aberrant cell–substratum interactions and a reduction in cell proliferation. J Cell Sci 117:609–618

    Article  CAS  PubMed  Google Scholar 

  • Koh H, Lee KH, Kim D, Kim S, Kim JW, Chung J (2000) Inhibition of Akt and its anti-apoptotic activities by tumor necrosis factor-induced protein kinase C-related kinase 2 (PRK2) cleavage. J Biol Chem 275:34451–34458

    Article  CAS  PubMed  Google Scholar 

  • Lesueur F, Pharoah PD, Laing S, Ahmed S, Jordan C, Smith PL, Luben R, Wareham NJ, Easton DF, Dunning AM, Ponder BA (2005) Allelic association of the human homologue of the mouse modifier Ptprj with breast cancer. Hum Mol Genet 14:2349–2356

    Article  CAS  PubMed  Google Scholar 

  • Massa A, Barbieri F, Aiello C, Arena S, Pattarozzi A, Pirani P, Corsaro A, Iuliano R, Fusco A, Zona G, Spaziante R, Florio T, Schettini G (2004) The expression of the phosphotyrosine phosphatase DEP-1/PTPeta dictates the responsivity of glioma cells to somatostatin inhibition of cell proliferation. J Biol Chem 279:29004–29012

    Article  CAS  PubMed  Google Scholar 

  • Nishimoto S, Nishida E (2006) MAPK signalling: ERK5 versus ERK1/2. EMBO Rep 7:782–786

    Article  CAS  PubMed  Google Scholar 

  • Ostman A, Yang Q, Tonks NK (1994) Expression of DEP-1, a receptor-like protein-tyrosine-phosphatase, is enhanced with increasing cell density. Proc Natl Acad Sci USA 91:9680–9684

    Article  CAS  PubMed  Google Scholar 

  • Palka HL, Park M, Tonks NK (2003) Hepatocyte growth factor receptor tyrosine kinase met is a substrate of the receptor protein–tyrosine phosphatase DEP-1. J Biol Chem 278:5728–5735

    Article  CAS  PubMed  Google Scholar 

  • Pharoah PDP, Antoniou AC, Easton DF, Ponder BAJ (2008) Polygenes, risk prediction, and targeted prevention of breast cancer. New Eng J Med 358:2796–2803

    Article  CAS  PubMed  Google Scholar 

  • Ruivenkamp CA, van Wezel T, Zanon C, Stassen AP, Vlcek C, Csikós T, Klous AM, Tripodis N, Perrakis A, Boerrigter L, Groot PC, Lindeman J, Mooi WJ, Meijjer GA, Scholten G, Dauwerse H, Paces V, van Zandwijk N, van Ommen GJ, Demant P (2002) Ptprj is a candidate for the mouse colon-cancer susceptibility locus Scc1 and is frequently deleted in human cancers. Nat Genet 31:295–300

    Article  CAS  PubMed  Google Scholar 

  • Ruivenkamp C, Hermsen M, Postma C, Klous A, Baak J, Meijer G, Demant P (2003) LOH of PTPRJ occurs early in colorectal cancer and is associated with chromosomal loss of 18q12–21. Oncogene 22:3472–3474

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T, Takahashi K, Mernaugh RL, Tsuboi N, Liu H, Daniel TO (2006) A monoclonal antibody against CD148, a receptor-like tyrosine phosphatase, inhibits endothelial-cell growth and angiogenesis. Blood 108:1234–1242

    Article  CAS  PubMed  Google Scholar 

  • Villa F, Deak M, Bloomberg GB, Alessi DR, van Aalten DM (2005) Crystal structure of the PTPL1/FAP-1 human tyrosine phosphatase mutated in colorectal cancer: evidence for a second phosphotyrosine substrate recognition pocket. J Biol Chem 280:8180–8187

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Shen D, Parsons DW, Bardelli A, Sager J, Szabo S, Ptak J, Silliman N, Peters BA, van der Heijden MS, Parmigiani G, Yan H, Wang TL, Riggins G, Powell SM, Willson JK, Markowitz S, Kinzler KW, Vogelstein B, Velculescu VE (2004) Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science 304:1164–1166

    Article  CAS  PubMed  Google Scholar 

  • Yeh SH, Wu DC, Tsai CY, Kuo TJ, Yu WC, Chang YS, Chen CL, Chang CF, Chen DS, Chen PJ (2006) Genetic characterization of fas-associated phosphatase-1 as a putative tumor suppressor gene on chromosome 4q21.3 in hepatocellular carcinoma. Clin Cancer Res 12:1097–1108

    Article  CAS  PubMed  Google Scholar 

  • Zhu JH, Chen R, Yi W, Cantin GT, Fearns C, Yang Y, Yates JR 3rd, Lee JD (2008) Protein tyrosine phosphatase PTPN13 negatively regulates Her2/ErbB2 malignant signaling. Oncogene 27:2525–2531

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks are due to the surgeons of Okayama University Hospital for their cooperation. We also acknowledge Dr. Y. Kusaka of Kusaka Hospital (Bizen, Okayama), for his great help. We appreciate Dr. J. B. Cologne for his excellent advise on biostatistical analyses and on the manuscript preparation. This study was supported by a grant from the Ministry of Education, Culture, Sports, Science and Technology of Japan; (12213084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Shimizu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mita, Y., Yasuda, Y., Sakai, A. et al. Missense polymorphisms of PTPRJ and PTPN13 genes affect susceptibility to a variety of human cancers. J Cancer Res Clin Oncol 136, 249–259 (2010). https://doi.org/10.1007/s00432-009-0656-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-009-0656-7

Keywords

Navigation