Skip to main content
Log in

Insulin resistance is associated with at least threefold increased risk for prothrombotic state in severely obese youngsters

  • Original Paper
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Obesity in childhood increases the risk for early adult cardiovascular disease. However, the underlying mechanism is not fully known. The aims of this study were to measure levels of prothrombotic factors and examine their possible association with obesity and insulin resistance in obese children and adolescents. A total of 313 obese children and adolescents were recruited. In a cross-sectional design, we measured anthropometric parameters, plasminogen activator inhibitor-1-antigen (PAI-1-Ag), von Willebrand factor-antigen (vWF-Ag), fibrinogen (FB), lipids, fasting glucose, and insulin (FI) levels. Insulin resistance was estimated using the homeostasis model assessment for insulin resistance (HOMA-IR) index. Boys presented significantly higher PAI-1-Ag levels than girls (82.6 vs. 71.3 ng/ml, p = 0.01). Higher levels of PAI-1-Ag (96.8 vs. 69 ng/ml, p < 0.001), vWF-Ag (123.5 vs. 107.6%, p = 0.004) but not FB (353.1 vs. 337.6 mg/dl, p = 0.137) were found in insulin-resistant (IR) participants after adjusted for age, gender, and pubertal stage. IR patients were at 2.98 (CI: 1.084–8.193) and 4.86 (CI: 1.119–15.606) times greater risk for high PAI-1-Ag and vWF-Ag levels, respectively. All three prothrombotic factors were positively correlated with body mass index (BMI) and FI levels (p < 0.05), but only PAI-1-Ag and vWF-Ag were significantly correlated with HOMA-IR index (p ≤ 0.001). After adjustment for confounding factors, both BMI and HOMA-IR indices remained significantly associated with PAI-1-Ag (r 2 = 0.225, p < 0.001) and vWF-Ag levels (r 2 = 0.077, p = 0.003). Conclusion: This study shows that obesity in youngsters, when accompanied with insulin resistance, is associated with at least threefold increased risk for elevated levels of prothrombotic factors, contributing to the early development of atherothrombosis. This impaired prothrombotic state may partially explain the increased risk for developing cardiovascular disease later in adulthood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BMI:

Body mass index

CI:

Confidence interval

FG:

Fasting glucose

FI:

Fasting insulin

FB:

Fibrinogen

HDL-c:

High-density lipoprotein cholesterol

HOMA-IR:

Homeostasis model assessment for insulin resistance

IGT:

Impaired glucose tolerance

IR:

Insulin-resistant

LDL-c:

Low-density lipoprotein cholesterol

MS:

Metabolic syndrome

NIR:

Non insulin-resistant

OR:

Odds ratio

PAI-1-Ag:

Plasminogen activator inhibitor-1-antigen

SD:

Standard deviation

TC:

Total cholesterol

TG:

Triglycerides

vWF-Ag:

von Willebrand factor-antigen

References

  1. American Diabetes Association (2005) Diagnosis and classification of diabetes mellitus. Diab Care 28:37–42

    Article  Google Scholar 

  2. Al-Daghri NM, Al-Attas OS, Alokail MS et al (2010) Relationship between resistin and aPAI-1 levels with insulin resistance in Saudi children. Pediatr Int. doi:10.1111/j.1442-200X.2010.03091.x

    PubMed  Google Scholar 

  3. Anand SS, Yi Q, Gerstein H et al (2003) Relationship of metabolic syndrome and fibrinolytic dysfunction to cardiovascular disease. Circulation 108:420–425

    Article  PubMed  CAS  Google Scholar 

  4. Andrew M, Vegh P, Johnston M et al (1992) Maturation of the hemostatic system during childhood. Blood 80:1998–2005

    PubMed  CAS  Google Scholar 

  5. Baker JL, Olsen LW, Sorensen TI (2007) Childhood body mass index and the risk of coronary heart disease in adulthood. N Engl J Med 357:2329–2337

    Article  PubMed  CAS  Google Scholar 

  6. Balagopal P, Sweeten S, Mauras N (2002) Increased synthesis rate of fibrinogen as a basis for its elevated plasma levels in obese female adolescents. Am J Physiol Endocrinol Metab 282:E899–E904

    PubMed  CAS  Google Scholar 

  7. Bao W, Srinivasan SR, Berenson GS (1993) Plasma fibrinogen and its correlates in children from a biracial community: the Bogalusa Heart Study. Pediatr Res 33:323–326

    PubMed  CAS  Google Scholar 

  8. Bao W, Srinivasan SR, Berenson GS (1996) Persistent elevation of plasma insulin levels is associated with increased cardiovascular risk in children and young adults: the Bogalusa Heart Study. Circulation 93:54–59

    PubMed  CAS  Google Scholar 

  9. Bastard JP, Pieroni L, Hainque B (2000) Relationship between plasma plasminogen activator inhibitor 1 and insulin resistance. Diab Metab Res Rev 16:192–201

    Article  CAS  Google Scholar 

  10. Bibbins-Domingo K, Coxson P, Pletcher MJ et al (2007) Adolescent overweight and future adult coronary heart disease. N Engl J Med 357:2371–2379

    Article  PubMed  CAS  Google Scholar 

  11. Bilgili S, Celebiler AC, Dogan A, Karaca B (2008) Inverse relationship between adiponectin and plasminogen activator inhibitor-1 in metabolic syndrome patients. Endocr Regul 42:63–68

    PubMed  CAS  Google Scholar 

  12. Bonora E, Kiechl S, Willeit J et al (2003) Metabolic syndrome: epidemiology and more extensive phenotypic description. Cross-sectional data from the Bruneck Study. Int J Obes Relat Metab Disord 27:1283–1289

    Article  PubMed  CAS  Google Scholar 

  13. Calabresi L, Gomaraschi M, Villa B et al (2002) Elevated soluble cellular adhesion molecules in subjects with low HDL-cholesterol. Arterioscler Thromb Vasc Biol 22:656–661

    Article  PubMed  CAS  Google Scholar 

  14. Cigolini M, Targher G, Bergamo Andreis IA et al (1996) Visceral fat accumulation and its relation to plasma hemostatic factors in healthy men. Arterioscler Thromb Vasc Biol 16:368–374

    PubMed  CAS  Google Scholar 

  15. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH (2000) Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 320:1240–1243

    Article  PubMed  CAS  Google Scholar 

  16. Crandall DL, Busler DE, McHendry-Rinde B et al (2000) Autocrine regulation of human preadipocyte migration by plasminogen activator inhibitor-1. J Clin Endocrinol Metab 85:2609–2614

    Article  PubMed  CAS  Google Scholar 

  17. Danesh J, Collins R, Appleby P, Peto R (1998) Association of fibrinogen, C-reactive protein, albumin, or leukocyte count with coronary heart disease: meta-analyses of prospective studies. JAMA 279:1477–1482

    Article  PubMed  CAS  Google Scholar 

  18. Dell RB, Holleran S, Ramakrishnan R (2002) Sample size determination. ILAR J 43:207–213, Erratum in: ILAR J 2003;44:239

    PubMed  CAS  Google Scholar 

  19. Desideri G, De Simone M, Iughetti L et al (2005) Early activation of vascular endothelial cells and platelets in obese children. J Clin Endocrinol Metab 90:3145–3152

    Article  PubMed  CAS  Google Scholar 

  20. Eriksson P, Nilsson L, Karpe F, Hamsten A (1998) Very-low-density lipoprotein response element in the promoter region of the human plasminogen activator inhibitor-1 gene implicated in the impaired fibrinolysis of hypertriglyceridemia. Arterioscler Thromb Vasc Biol 18:20–26

    PubMed  CAS  Google Scholar 

  21. Eriksson P, Van Harmelen V, Hoffstedt J et al (2000) Regional variation in plasminogen activator inhibitor-1 expression in adipose tissue from obese individuals. Thromb Haemost 83:545–548

    PubMed  CAS  Google Scholar 

  22. Ernst E, Resch KL (1993) Fibrinogen as a cardiovascular risk factor: a meta-analysis and review of the literature. Ann Intern Med 118:956–963

    PubMed  CAS  Google Scholar 

  23. Ferguson MA, Gutin B, Owens S et al (1998) Fat distribution and hemostatic measures in obese children. Am J Clin Nutr 67:1136–1140

    PubMed  CAS  Google Scholar 

  24. Festa A, D'Agostino R Jr, Tracy RP et al (2002) Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes 51:1131–1137

    Article  PubMed  CAS  Google Scholar 

  25. Ford ES (2003) The metabolic syndrome and C-reactive protein, fibrinogen, and leukocyte count: findings from the Third National Health and Nutrition Examination Survey. Atherosclerosis 168:351–358

    Article  PubMed  CAS  Google Scholar 

  26. Gallistl S, Sudi KM, Borkenstein M et al (2000) Determinants of haemostatic risk factors for coronary heart disease in obese children and adolescents. Int J Obes Relat Metab Disord 24:1459–1464

    Article  PubMed  CAS  Google Scholar 

  27. Garanty-Bogacka B, Syrenicz M, Syrenicz A et al (2005) Relation of acute-phase reaction and endothelial activation to insulin resistance and adiposity in obese children and adolescents. Neuroendocrinol Lett 26:473–479

    PubMed  CAS  Google Scholar 

  28. Goldberg RB (2009) Cytokine and cytokine-like inflammation markers, endothelial dysfunction, and imbalanced coagulation in development of diabetes and its complications. J Clin Endocrinol Metab 94:3171–3182

    Article  PubMed  CAS  Google Scholar 

  29. Greenfield JR, Campbell LV (2006) Relationship between inflammation, insulin resistance and type 2 diabetes: 'Cause or effect'? Curr Diab Rev 2:195–211

    Article  CAS  Google Scholar 

  30. Gungor N, Saad R, Janosky J, Arslanian S (2004) Validation of surrogate estimates of insulin sensitivity and insulin secretion in children and adolescents. J Pediatr 144:47–55

    Article  PubMed  CAS  Google Scholar 

  31. Juhan-Vague I, Alessi MC, Vague P (1991) Increased plasma plasminogen activator inhibitor 1 levels. A possible link between insulin resistance and atherothrombosis. Diabetologia 34:457–462

    Article  PubMed  CAS  Google Scholar 

  32. Juhan-Vague I, Alessi MC, Vague P (1996) Thrombogenic and fibrinolytic factors and cardiovascular risk in non-insulin-dependent diabetes mellitus. Ann Med 28:371–380

    Article  PubMed  CAS  Google Scholar 

  33. Juhan-Vague I, Alessi MC, Morange PE (2000) Hypofibrinolysis and increased PAI-1 are linked to atherothrombosis via insulin resistance and obesity. Ann Med 32(Suppl 1):78–84

    PubMed  CAS  Google Scholar 

  34. Kannel WB, Wolf PA, Castelli WP, D'Agostino RB (1987) Fibrinogen and risk of cardiovascular disease. The Framingham Study. JAMA 258:1183–1186

    Article  PubMed  CAS  Google Scholar 

  35. Kershaw EE, Flier JS (2004) Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89:2548–2556

    Article  PubMed  CAS  Google Scholar 

  36. Kinik ST, Özbek N, Yuce M et al (2008) PAI-1 gene 4G/5G polymorphism, cytokine levels and their relations with metabolic parameters in obese children. Thromb Haemost 99:352–356

    PubMed  CAS  Google Scholar 

  37. Legnani C, Maccaferri M, Tonini P et al (1988) Reduced fibrinolytic response in obese children: association with high baseline activity of the fast acting plasminogen activator inhibitor (PAI-1). Fibrinolysis 2:211–214

    Article  Google Scholar 

  38. Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105:1135–1143

    Article  PubMed  CAS  Google Scholar 

  39. Lim HS, Lip GY, Blann AD (2004) Plasma von Willebrand factor and the development of the metabolic syndrome in patients with hypertension. J Clin Endocrinol Metab 89:5377–5381

    Article  PubMed  CAS  Google Scholar 

  40. Lip GYH, Blann A (1997) von Willebrand factor: a marker of endothelial dysfunction in vascular disorders? Cardiovasc Res 34:255–265

    Article  PubMed  CAS  Google Scholar 

  41. Livadas S, Dracopoulou M, Vasileiadi K et al (2009) Elevated coagulation and inflammatory markers in adolescents with a history of premature adrenarche. Metabolism 58:576–581

    Article  PubMed  CAS  Google Scholar 

  42. Marshall WA, Tanner JM (1969) Variations in pattern of pubertal changes in girls. Arch Dis Child 44:291–303

    Article  PubMed  CAS  Google Scholar 

  43. Marshall WA, Tanner JM (1970) Variations in the pattern of pubertal changes in boys. Arch Dis Child 45:13–23

    Article  PubMed  CAS  Google Scholar 

  44. Matthews DR, Hosker JP, Rudenski AS (1985) Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    Article  PubMed  CAS  Google Scholar 

  45. Mauras N, DelGiorno C, Kollman C et al (2010) Obesity without established comorbidities of the metabolic syndrome is associated with a proinflammatory and prothrombotic state, even before the onset of puberty in children. J Clin Endocrinol Metab 95:1060–1068

    Article  PubMed  CAS  Google Scholar 

  46. McGill HCJ, McMahan CA, Herderick EE et al (2000) Origin of atherosclerosis in childhood and adolescence. Am J Clin Nutr 72:1307S–1315S

    PubMed  CAS  Google Scholar 

  47. Mertens I, Van Gaal LF (2002) Obesity, haemostasis and the fibrinolytic system. Obes Rev 3:85–101

    Article  PubMed  CAS  Google Scholar 

  48. Mertens I, Verrijken A, Michiels JJ et al (2006) Among inflammation and coagulation markers, PAI-1 is a true component of the metabolic syndrome. Int J Obes (Lond) 30:1308–1314

    Article  CAS  Google Scholar 

  49. Muntner P, He J, Chen J et al (2004) Prevalence of non-traditional cardiovascular disease risk factors among persons with impaired fasting glucose, impaired glucose tolerance, diabetes, and the metabolic syndrome: analysis of the Third National Health and Nutrition Examination Survey (NHANES III). Ann Epidemiol 14:686–695

    Article  PubMed  Google Scholar 

  50. Nienaber C, Pieters M, Kruger SH et al (2008) Overfatness, stunting and physical inactivity are determinants of plasminogen activator inhibitor-1activity, fibrinogen and thrombing–antithrombin complex in African adolescents. Blood Coagul Fibrinolysis 19:361–368

    Article  PubMed  CAS  Google Scholar 

  51. Norata GD, Grigore L, Raselli S et al (2006) Triglyceride-rich lipoproteins from hypertriglyceridemic subjects induce a pro-inflammatory response in the endothelium: molecular mechanisms and gene expression studies. J Mol Cell Cardiol 40:484–494

    Article  PubMed  CAS  Google Scholar 

  52. Ogden CL, Carroll MD, Curtin LR et al (2006) Prevalence of overweight and obesity in the United States, 1999–2004. JAMA 295:1549–1555

    Article  PubMed  CAS  Google Scholar 

  53. Pannacciulli N, De Mitrio V, Marino R et al (2002) Effect of glucose tolerance status on PAI-1 plasma levels in overweight and obese subjects. Obes Res 10:717–725

    Article  PubMed  CAS  Google Scholar 

  54. Sawdey MS, Loskutoff DJ (1991) Regulation of murine type 1 plasminogen activator inhibitor gene expression in vivo. Tissue specificity and induction by lipopolysaccharide, tumor necrosis factor-alpha, and transforming growth factor-beta. J Clin Invest 88:1346–1353

    Article  PubMed  CAS  Google Scholar 

  55. Schneider DJ, Sobel BE (1991) Augmentation of synthesis of plasminogen activator inhibitor type 1 by insulin and insulin-like growth factor type I: implications for vascular disease in hyperinsulinemic states. Proc Natl Acad Sci USA 88:9959–9963

    Article  PubMed  CAS  Google Scholar 

  56. Shimomura I, Funahashi T, Takahashi M et al (1996) Enhanced expression of PAI-1 in visceral fat: possible contributor to vascular disease in obesity. Nat Med 2:800–803

    Article  PubMed  CAS  Google Scholar 

  57. Sosothikul D, Seksarn P, Lusher JM (2007) Pediatric reference values for molecular markers in hemostasis. J Pediatr Hematol Oncol 29:19–22

    Article  PubMed  CAS  Google Scholar 

  58. Sudi KM, Gallistl S, Weinhandl G et al (2000) Relationship between plasminogen activator inhibitor-1 antigen, leptin, and fat mass in obese children and adolescents. Metabolism 49:890–895

    Article  PubMed  CAS  Google Scholar 

  59. Taeye BD, Smith LH, Vaughan DE (2005) Plasminogen activator inhibitor-1: a common denominator in obesity, diabetes and cardiovascular disease. Curr Opin Pharmacol 5:149–154

    Article  PubMed  Google Scholar 

  60. Thogersen AM, Jansson JH, Boman K et al (1998) High plasminogen activator inhibitor and tissue plasminogen activator levels in plasma precede a first acute myocardial infarction in both men and women: evidence for the fibrinolytic system as an independent primary risk factor. Circulation 98:2241–2247

    PubMed  CAS  Google Scholar 

  61. Vague P, Juhan-Vague I, Chabert V et al (1989) Fat distribution and plasminogen activator inhibitor activity in nondiabetic obese women. Metabolism 38:913–915

    Article  PubMed  CAS  Google Scholar 

  62. Valle Jiménez M, Estepa RM, Camacho RM et al (2007) Endothelial dysfunction is related to insulin resistance and inflammatory biomarker levels in obese prepubertal children. Eur J Endocrinol 156:497–502

    Article  PubMed  Google Scholar 

  63. Valle M, Gascon F, Martos R et al (2000) Infantile obesity: a situation of atherothrombotic risk? Metabolism 49:672–675

    Article  PubMed  CAS  Google Scholar 

  64. Valle M, Martos R, Gascon F et al (2005) Low-grade systemic inflammation, hypoadiponectinemia and a high concentration of leptin are present in very young obese children, and correlate with metabolic syndrome. Diab Metab 31:55–62

    Article  CAS  Google Scholar 

  65. Zimmet P, Alberti GKMM, Kaufman F et al (2007) The metabolic syndrome in children and adolescents—an IDF consensus report. Pediatr Diab 8:299–306

    Article  Google Scholar 

Download references

Conflicts of interest

The authors did not have any financial support during the research and have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assimina Galli-Tsinopoulou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galli-Tsinopoulou, A., Kyrgios, I., Maggana, I. et al. Insulin resistance is associated with at least threefold increased risk for prothrombotic state in severely obese youngsters. Eur J Pediatr 170, 879–886 (2011). https://doi.org/10.1007/s00431-010-1370-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-010-1370-9

Keywords

Navigation