Skip to main content

Advertisement

Log in

Identification of tumor differentiation factor (TDF) in select CNS neurons

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Identification of central nervous system (CNS) molecules elucidates normal and pathological brain function. Tumor differentiation factor (TDF) is a recently-found protein secreted by the pituitary into the blood. TDF mRNA was detected in brain; not heart, placenta, lung, liver, skeletal muscle, or pancreas. However, TDF has an unclear function. It is not known whether TDF is expressed only by pituitary or by other brain regions. It is also not known precisely where TDF is expressed in the brain or which cells produce TDF. Database searching revealed that this molecule shares no homology with any known protein. Therefore, we investigated the distribution of TDF in the rat brain using immunohistochemistry (IHC) and immunofluorescence (IF). TDF protein was detected in pituitary and most other brain regions. Double-staining for TDF and glial fibrillary acidic protein (GFAP), an astrocyte marker, showed no co-localization. Double-staining for TDF with NeuN, a neuronal marker, showed co-localization. Not all NeuN positive cells were positive for TDF. Western blotting (WB) using NG108 neuroblastoma and GS9L astrocytoma cell lysate revealed TDF immunoreactivity in cultured neuroblastoma, not astrocytoma. These data suggest that TDF is localized in neurons, not in astrocytes. This is the first report of any cellular localization of TDF. TDF may have specific roles as a pituitary-derived hormone and in the CNS, and appears to be produced by distinct CNS neurons, not astroglia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

TDF:

Tumor differentiation factor

TDF-R:

TDF receptor

CNS:

Central nervous system

NG108-15:

Neuroblastoma × glioma cell line

GS9L:

Astrocytoma cell line

GFAP:

Glial fibrillary acidic protein

NeuN:

Neuron-specific DNA-binding nuclear protein which functions as a marker for neurons

IHC:

Immunohistochemistry

IF:

Immunofluorescence

WB:

Western blotting

References

  • Bauman ML, Kemper TL (2005) Neuroanatomic observations of the brain in autism: a review and future directions. Int J Dev Neurosci 23(2–3):183–187

    Article  PubMed  Google Scholar 

  • Burry RW (2011) Controls for immunocytochemistry: an update. J Histochem Cytochem 59(1):6–12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Caldwell HK Young WS 3rd (2006) Oxytocin and vasopressin: genetics and behavioral implications (1st ed, vol 40). Springer, Berlin pp 573–607

  • Chen S, Brown IR (2007) Neuronal expression of constitutive heat shock proteins: implications for neurodegenerative diseases. Cell Stress Chaperones 12(1):51–58

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dallner C, Woods AG, Deller T, Kirsch M, Hofmann HD (2002) CNTF and CNTF receptor alpha are constitutively expressed by astrocytes in the mouse brain. Glia 37(4):374–378

    Article  PubMed  Google Scholar 

  • Darie CC, Deinhardt K, Zhang G, Cardasis HS, Chao MV, Neubert TA (2011) Identifying transient protein–protein interactions in EphB2 signaling by blue native PAGE and mass spectrometry. Proteomics 11(23):4514–4528

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Friedrich N, Nauck M, Schipf S, Volzke H, Brabant G, Wallaschofski H (2013) Cross-sectional and longitudinal associations between insulin-like growth factor I and the metabolic syndrome: a general population study in German Adults. Diabetes Metab Res Rev (epub ahead of print)

  • Glebov K, Walter J (2012) Statins in unconventional secretion of insulin-degrading enzyme and degradation of the amyloid-beta peptide. Neurodegener Dis 10(1–4):309–312

    Article  CAS  PubMed  Google Scholar 

  • Goldenberg-Cohen N, Raiter A, Gaydar V, Dratviman-Storobinsky O, Goldstein T, Weizman A et al. (2011) Peptide-binding GRP78 protects neurons from hypoxia-induced apoptosis. Apoptosis. doi:10.1007/s10495-011-0678-x

  • Guthrie KM, Woods AG, Nguyen T, Gall CM (1997) Astroglial ciliary neurotrophic factor mRNA expression is increased in fields of axonal sprouting in deafferented hippocampus. J Comp Neurol 386(1):137–148

    Article  CAS  PubMed  Google Scholar 

  • Harvey S (2010) Extrapituitary growth hormone. Endocrine 38(3):335–359

    Article  CAS  PubMed  Google Scholar 

  • Hatton GI (1988) Pituicytes, glia and control of terminal secretion. J Exp Biol 139:67–79

    CAS  PubMed  Google Scholar 

  • Hecker JG, McGarvey M (2011) Heat shock proteins as biomarkers for the rapid detection of brain and spinal cord ischemia: a review and comparison to other methods of detection in thoracic aneurysm repair. Cell Stress Chaperones 16(2):119–131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kenney-Herbert EM, Ball SL, Al-Mayhani TM, Watts C (2011) Glioblastoma cell lines derived under serum-free conditions can be used as an in vitro model system to evaluate therapeutic response. Cancer Lett 305(1):50–57

    Article  CAS  PubMed  Google Scholar 

  • Kim N, Kim JY, Yenari MA (2012) Anti-inflammatory properties and pharmacological induction of Hsp70 after brain injury. Inflammopharmacology. doi:10.1007/s10787-011-0115-3

  • Kruger X, Saporta Y, Swanson Z (1995). The cell and fiber architecture illustrated in three planes with stereotaxic coordinates Photographic atlas of the rat brain (1st edn) Cambridge University Press, Cambridge

  • Platica M, Chen HZ, Ciurea D, Gil J, Mandeli J, Hollander VP (1992) Pituitary extract causes aggregation and differentiation of rat mammary tumor MTW9/Pl cells. Endocrinology 131(6):2573–2580

    CAS  PubMed  Google Scholar 

  • Platica M, Ivan E, Holland JF, Ionescu A, Chen S, Mandeli J et al (2004) A pituitary gene encodes a protein that produces differentiation of breast and prostate cancer cells. Proc Natl Acad Sci USA 101(6):1560–1565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Redecker P, Fechner J (1989) Immunohistochemical study of cells positive for glial fibrillary acidic protein (GFAP) in the human pituitary gland, with special reference to folliculo-stellate cells. Histochemistry 91(3):227–234

    Article  CAS  PubMed  Google Scholar 

  • Rezende LF, Santos GJ, Santos-Silva JC, Carneiro EM, Boschero AC (2012) Ciliary neurotrophic factor (CNTF) protects non-obese Swiss mice against type 2 diabetes by increasing beta cell mass and reducing insulin clearance. Diabetologia 55(5):1495–1504

    Article  CAS  PubMed  Google Scholar 

  • Roy U, Sokolowska I, Woods AG, Darie CC (2012) Structural investigation of tumor differentiation factor (TDF). Biotechnol Appl Biochem 59:445–450

    Article  CAS  PubMed  Google Scholar 

  • Sastry BR, Morishita W, Yip S, Shew T (1997) GABA-ergic transmission in deep cerebellar nuclei. Prog Neurobiol 53(2):259–271

    Article  CAS  PubMed  Google Scholar 

  • Shi SR, Chaiwun B, Young L, Cote RJ, Taylor CR (1993) Antigen retrieval technique utilizing citrate buffer or urea solution for immunohistochemical demonstration of androgen receptor in formalin-fixed paraffin sections. J Histochem Cytochem 41(11):1599–1604

    Article  CAS  PubMed  Google Scholar 

  • Sloviter RS (1996) Hippocampal pathology and pathophysiology in temporal lobe epilepsy. Neurologia 11(Suppl 4):29–32

    PubMed  Google Scholar 

  • Sokolowska I, Woods AG, Wagner J, Dorler J, Wormwood K, Thome J et al (2011) Mass spectrometry for proteomics-based investigation of oxidative stress and heat shock proteins. In: Andreescu S, Hepel M (eds) Oxidative stress: diagnostics, prevention, and therapy. American Chemical Society, Washington

    Google Scholar 

  • Sokolowska I, Woods AG, Gawinowicz MA, Roy U, Darie CC (2012a) Characterization of tumor differentiation factor (TDF) and its receptor (TDF-R). Cell Mol Life Sci (epub ahead of print)

  • Sokolowska I, Woods AG, Gawinowicz MA, Roy U, Darie CC (2012b) Identification of a potential tumor differentiation factor receptor candidate in prostate cancer cells. FEBS J 279(14):2579–2594

    Article  CAS  PubMed  Google Scholar 

  • Sokolowska I, Woods AG, Gawinowicz MA, Roy U, Darie CC (2012c) Identification of potential tumor differentiation factor (TDF) Receptor from steroid-responsive and steroid-resistant breast cancer cells. J Biol Chem 287(3):1719–1733

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spellman DS, Deinhardt K, Darie CC, Chao MV, Neubert TA (2008) Stable isotopic labeling by amino acids in cultured primary neurons: application to brain-derived neurotrophic factor-dependent phosphotyrosine-associated signaling. Mol Cell Proteomics 7(6):1067–1076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sutton MA, Schuman EM (2006) Dendritic protein synthesis, synaptic plasticity, and memory. Cell 127(1):49–58

    Article  CAS  PubMed  Google Scholar 

  • van Noort JM (2008) Stress proteins in CNS inflammation. J Pathol 214(2):267–275

    Article  PubMed  Google Scholar 

  • Weyer A, Schilling K (2003) Developmental and cell type-specific expression of the neuronal marker NeuN in the murine cerebellum. J Neurosci Res 73(3):400–409

    Article  CAS  PubMed  Google Scholar 

  • Wiese S, Karus M, Faissner A (2012) Astrocytes as a source for extracellular matrix molecules and cytokines. Front Pharmacol 3:120

    Article  PubMed Central  PubMed  Google Scholar 

  • Wolf HK, Buslei R, Schmidt-Kastner R, Schmidt-Kastner PK, Pietsch T, Wiestler OD et al (1996) NeuN: a useful neuronal marker for diagnostic histopathology. J Histochem Cytochem 44(10):1167–1171

    Article  CAS  PubMed  Google Scholar 

  • Woods AG, Guthrie KM, Kurlawalla MA, Gall CM (1998) Deafferentation-induced increases in hippocampal insulin-like growth factor-1 messenger RNA expression are severely attenuated in middle aged and aged rats. Neuroscience 83(3):663–668

    Article  CAS  PubMed  Google Scholar 

  • Woods AG, Poulsen FR, Gall CM (1999) Dexamethasone selectively suppresses microglial trophic responses to hippocampal deafferentation. Neuroscience 91(4):1277–1289

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Kenneth Wallace (Clarkson University) for advice on immunohistochemistry, as well as Dr. Ivan Soltesz (UC Irvine) and Dr. Moses Chao (NYU) for helpful discussions. We also thank Dr. Thomas A. Neubert (Skirball Institute, New York University, New York, NY) and Ms. Jill Pflugheber (ST. Lawrence University, Canton, NY) for providing the NG108 neuroblastoma and GS9L astrocytoma cell lines. This work was supported in part by U.S. Army research office (DURIP grant #W911NF-11-1-0304).

Conflict of interest

The authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costel C. Darie.

Additional information

A. G. Woods and I. Sokolowska contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woods, A.G., Sokolowska, I., Deinhardt, K. et al. Identification of tumor differentiation factor (TDF) in select CNS neurons. Brain Struct Funct 219, 1333–1342 (2014). https://doi.org/10.1007/s00429-013-0571-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-013-0571-1

Keywords

Navigation