Skip to main content
Log in

Experimental induction of reading difficulties in normal readers provides novel insights into the neurofunctional mechanisms of visual word recognition

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Phonological and visual dysfunctions may result in reading deficits like those encountered in developmental dyslexia. Here, we use a novel approach to induce similar reading difficulties in normal readers in an event-related fMRI study, thus systematically investigating which brain regions relate to different pathways relating to orthographic-phonological (e.g. grapheme-to-phoneme conversion, GPC) vs. visual processing. Based upon a previous behavioural study (Tholen et al. 2011), the retrieval of phonemes from graphemes was manipulated by lowering the identifiability of letters in familiar vs. unfamiliar shapes. Visual word and letter processing was impeded by presenting the letters of a word in a moving, non-stationary manner. FMRI revealed that the visual condition activated cytoarchitectonically defined area hOC5 in the magnocellular pathway and area 7A in the right mesial parietal cortex. In contrast, the grapheme manipulation revealed different effects localised predominantly in bilateral inferior frontal gyrus (left cytoarchitectonic area 44; right area 45) and inferior parietal lobule (including areas PF/PFm), regions that have been demonstrated to show abnormal activation in dyslexic as compared to normal readers. This pattern of activation bears close resemblance to recent findings in dyslexic samples both behaviourally and with respect to the neurofunctional activation patterns. The novel paradigm may thus prove useful in future studies to understand reading problems related to distinct pathways, potentially providing a link also to the understanding of real reading impairments in dyslexia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. In the study by Tholen et al. (2011), four levels of motion were used. Since there was a reliable main effect of the amplitude of motion, the paradigm was simplified to only two levels, thus allowing more trials per condition and a higher experimental power. Please refer to “Results” to see that this amendment led to a good replication of the findings obtained with the four levels of motion.

  2. Eight conditions result from the three factors WORD-TYPE (word vs. pseudoword) × MOVEMENT (Amplitude 0 vs. Amplitude 50) × FONT (Normal vs. Graffiti).

  3. Due to a technical problem, only behavioural data sets from 24 participants were recorded. Consequently, only these were considered here for RT analysis. Missing values in these participants were replaced by group cell means. For accuracy data, two of these datasets were not complete; therefore, only 22 data sets entered the analysis.

  4. Most previous neuroimaging studies used the labels “V5/MT” or “V5/MT+” when referring to effects in the motion-sensitive aspect of the posterior MTG: In order to avoid confusion between these labels, which are partly used in a very broad manner, and the present findings based on cytoarchitectonic probability maps, we use the following terms. If the activation cluster overlaps with a cytoarchitectonically defined region, e.g. hOC5, this label is used. If no such overlap is observed, we prefer the term “posterior MTG” where appropriate.

  5. Note that a conjunction analysis is as conservative as inclusive masking, or even more so because each voxel is assigned the lower of the values of the respective contrast images of which it is computed.

References

  • Amunts K, Schleicher A, Burgel U, Mohlberg H, Uylings HBM, Zilles K (1999) Broca’s region revisited: cytoarchitecture and intersubject variability. J Comp Neurol 412:319–341

    Article  CAS  PubMed  Google Scholar 

  • Bohland JW, Guenther FH (2006) An fMRI investigation of syllable sequence production. Neuroimage 32:821–841

    Article  PubMed  Google Scholar 

  • Cao F, Bitan T, Chou T, Burman DD, Booth JR (2006) Deficient orthographic and phonological representations in children with dyslexia revealed by brain activation patterns. J Child Psychol Psychiat 47:1041–1050

    Article  PubMed Central  PubMed  Google Scholar 

  • Carreiras M, Mechelli A, Estévez A, Price CJ (2007) Brain activation for lexical decision and reading aloud: two sides of the same coin? J Cogn Neurosci 19:433–444

    Article  PubMed  Google Scholar 

  • Carreiras M, Seghier ML, Baquero S, Estévez A, Lozano A, Devlin JT, Price CJ (2009) An anatomical signature for literacy. Nature 461:983–986

    Article  CAS  PubMed  Google Scholar 

  • Caspers S, Geyer S, Schleicher A, Mohlberg H, Amunts K, Zilles K (2006) The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual. Neuroimage 33:430–448

    Article  PubMed  Google Scholar 

  • Chase C, Dougherty RF, Ray N, Fowler S, Stein J (2007) L/M speed-matching ratio predicts reading in children. Optom Vis Sci 84:229–236

    Article  PubMed  Google Scholar 

  • Choi HJ, Zilles K, Mohlberg H, Schleicher A, Fink GR, Armstrong E, Amunts K (2006) Cytoarchitectonic identification and probabilistic mapping of two distinct areas within the anterior ventral bank of the human intraparietal sulcus. J Comp Neurol 495:53–69

    Article  PubMed Central  PubMed  Google Scholar 

  • Coltheart M, Rastle K, Perry C, Langdon R, Ziegler J (2001) DRC: a dual route cascaded model of visual word recognition and reading aloud. Psych Rev 108:204–256

    Article  CAS  Google Scholar 

  • Coltheart M, Tree JJ, Saunders SJ (2010) Computational modeling of reading in semantic dementia: comment on Woollams, Lambon Ralph, Plaut, and Patterson (2007). Psychol Rev 117:256–271 discussion 271–272

    Article  PubMed  Google Scholar 

  • Davis RD, Braun EM (2010) The gift of dyslexia, revised and expanded: why some of the smartest people can’t read…and how they can learn. Perigee Trade, New York

    Google Scholar 

  • Dehaene S, Cohen L (2011) The unique role of the visual word form area in reading. Trends Cogn Sci 15:254–262

    Article  PubMed  Google Scholar 

  • Dehaene S, Pegado F, Braga LW, Ventura P, Filho GN et al (2010) How learning to read changes the cortical networks for vision and language. Science 330:1359–1364

    Google Scholar 

  • Démonet JF, Chollet F, Ramsay S, Cardebat D, Nespoulos JL, Wise R, Rascol A, Frackowiack R (1992) The anatomy of phonological and semantic processing in normal subjects. Brain 115:1753–1768

    Article  PubMed  Google Scholar 

  • Eden GF, VanMeter JW, Rumsey JM, Maisog JM, Woods RP, Zeffiro TA (1996) Abnormal processing of visual motion in dyslexia revealed by functional brain imaging. Nature 382:66–69

    Article  CAS  PubMed  Google Scholar 

  • Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage 25:1325–1335

    Article  PubMed  Google Scholar 

  • Friston KJ, Penny WD, Glaser DE (2005) Conjunction revisited. Neuroimage 25:661–667

    Article  PubMed  Google Scholar 

  • Georgiewa P, Rzanny R, Hopf JM, Knab R, Glauche V, Kaiser WA, Blanz B (1999) fMRI during word processing in dyslexic and normal reading children. Neuroreport 10:3459–3465

    Article  CAS  PubMed  Google Scholar 

  • Georgiewa P, Rzanny R, Gaser C, Gerhard UJ, Vieweg U, Freesmeyer D, Mentzel HJ, Kaiser WA, Blanz B (2002) Phonological processing in dyslexic children: a study combining functional imaging and event related potentials. Neurosci Lett 318:5–8

    Article  CAS  PubMed  Google Scholar 

  • Grefkes C, Geyer S, Schormann T, Roland P, Zilles K (2001) Human somatosensory area 2: observer-independent cytoarchitectonic mapping, interindividual variability, and population map. Neuroimage 14:617–631

    Article  CAS  PubMed  Google Scholar 

  • Hadzibeganovic T, Van den Noort MWML, Bosch MPC, Prec M, Van Kralingen R, Mondt K, Coltheart M (2010) Cross-linguistic neuroimaging and dyslexia: a critical view. Cortex 46:1312–1316

    Article  PubMed  Google Scholar 

  • Heim S, Tschierse J, Amunts K, Wilms M, Vossel S, Willmes K et al (2008) Cognitive subtypes of dyslexia. Acta Neurobiol Exp 68:73–82

    Google Scholar 

  • Heim S, Eickhoff SB, Ischebeck AK, Friederici AD, Stephan KE, Amunts K (2009) Effective connectivity of the left BA 44, BA 45, and inferior temporal gyrus during lexical and phonological decisions identified with DCM. Hum Brain Mapp 30:392–402

    Google Scholar 

  • Heim S, Grande M, Meffert E, Eickhoff SB, Schreiber H, Kukolja J, Shah NJ, Huber W, Amunts K (2010a) Cognitive levels of performance account for hemispheric lateralisation effects in dyslexic and normally reading children. Neuroimage 53:1346–1358

    Article  PubMed  Google Scholar 

  • Heim S, Grande M, Pape-Neumann J, van Ermingen M, Meffert E, Grabowska A, Huber W, Amunts K (2010b) Interaction of phonological awareness and “magnocellular” processing during normal and dyslexic reading: behavioural and fMRI investigations. Dyslexia 16:258–282

    Article  PubMed  Google Scholar 

  • Jednoróg K, Marchewka A, Tacikowski P, Heim S, Grabowska A (2011) Electrophysiological evidence for the magnocellular-dorsal pathway deficit in dyslexia. Dev Sci 14:873–880. doi:10.1111/j.1467-7687.2011.01037.x

    Article  PubMed  Google Scholar 

  • Jobard G, Crivello F, Tzourio-Mazoyer N (2003) Evaluation of the dual route theory of reading: a metanalysis of 35 neuroimaging studies. Neuroimage 20:693–712

    Article  CAS  PubMed  Google Scholar 

  • Laszlo S, Plaut DC (2012) A neurally plausible parallel distributed processing model of event-related potential word reading data. Brain Lang 120:271–281

    Article  PubMed Central  PubMed  Google Scholar 

  • Laycock R, Crewther DP, Fitzgerald PB, Crewther SG (2009) TMS disruption of V5/MT+ indicates a role for the dorsal stream in word recognition. Exp Brain Res 197:69–79

    Article  PubMed  Google Scholar 

  • Malikovic A, Amunts K, Schleicher A, Mohlberg H, Eickhoff SB, Wilms M, Palomero-Gallagher N, Armstrong E, Zilles K (2007) Cytoarchitectonic analysis of the human extrastriate cortex in the region of V5/MT+: a probabilistic, stereotaxic map of area hOc5. Cereb Cortex 17:562–574

    Article  PubMed  Google Scholar 

  • Mechelli A, Crinion JT, Long S, Friston KJ, Lambon Ralph MA, Patterson K, McClelland JL, Price CJ (2005) Dissociating reading processes on the basis of neuronal interactions. J Cogn Neurosci 17:1753–1765

    Google Scholar 

  • Milne RD, Syngeniotis A, Jackson G, Corballis MC (2002) Mixed lateralization of phonological assembly in developmental dyslexia. Neurocase 8:205–209

    Article  PubMed  Google Scholar 

  • Nichols T, Brett M, Andersson J, Wager T, Poline JB (2005) Valid conjunction inference with the minimum statistic. Neuroimage 25:653–660

    Article  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  • Paulesu E, Démonet JF, Fazio F, McCrory E, Chanoine V, Brunswick N, Cappa SF, Cossu G, Habib M, Frith CF, Frith U (2001) Dyslexia: cultural diversity and biological unity. Science 291:2165–2167

    Article  CAS  PubMed  Google Scholar 

  • Plaut DC (2012) Giving theories of reading a sporting chance. Behav Brain Sci 35(5):301–302

    Article  PubMed  Google Scholar 

  • Plaut DC, McClelland JL, Seidenberg MS, Patterson K (1996) Understanding normal and impaired word reading: computational principles in quasi-regular domains. Psychol Rev 103:56–115

    Article  CAS  PubMed  Google Scholar 

  • Price CJ (2012) A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. Neuroimage 62:816–847

    Article  PubMed Central  PubMed  Google Scholar 

  • Price CJ, Mechelli A (2005) Reading and reading disturbance. Curr Opin Neurobiol 15:231–238

    Article  CAS  PubMed  Google Scholar 

  • Ramus F (2004) Neurobiology of dyslexia: a reinterpretation of the data. Trends Neurosci 27:720–726

    Article  CAS  PubMed  Google Scholar 

  • Ramus F, Szenkovits G (2008) What phonological deficit? Q J Exp Psychol 61:129–141

    Article  Google Scholar 

  • Richlan F, Kronbichler M, Wimmer H (2009) Functional abnormalities in the dyslexic brain: a quantitative meta-analysis of neuroimaging studies. Hum Brain Mapp 30:3299–3308

    Google Scholar 

  • Richlan F, Kronbichler M, Wimmer H (2011) Meta-analyzing brain dysfunctions in dyslexic children and adults. Neuroimage 56:1735–1742

    Article  PubMed  Google Scholar 

  • Scheperjans F, Eickhoff SB, Hömke L, Mohlberg H, Hermann K, Amunts K, Zilles K (2008) Probabilistic maps, morphometry and variability of cytoarchitectonic areas in the human superior parietal cortex. Cereb Cortex 18:2141–2157

    Article  PubMed  Google Scholar 

  • Schleicher A, Palomero-Gallagher N, Morosan P, Eickhoff SB, Kowalski T, de Vos K et al (2005) Quantitative architectural analysis: a new approach to cortical mapping. Anat Embryol 210:373–386

    Article  CAS  PubMed  Google Scholar 

  • Shaywitz SA, Shaywitz BA, Pugh KR, Fulbright RK, Constable RT, Mencl WE et al (1998) Functional disruption in the organization of the brain for reading in dyslexia. Neurobiology 95:2636–2641

    CAS  Google Scholar 

  • Snowling MJ (2000) Dyslexia, 2nd edn. Blackwell Publishers, Oxford

    Google Scholar 

  • Stein J (2001) The magnocellular theory of developmental dyslexia. Dyslexia 7:12–36

    Article  CAS  PubMed  Google Scholar 

  • Stein J, Walsh V (1997) To see but not to read: the magnocellular theory of dyslexia. Trends Neurosci 20:147–152

    Article  CAS  PubMed  Google Scholar 

  • Temple E, Poldrack R, Salidis J, Deutsch G, Tallal P, Merzenich M, Gabrieli J (2001) Disrupted neural responses to phonological and orthographic processing in dyslexic children: an fMRI study. Neuroreport 12:299–307

    Article  CAS  PubMed  Google Scholar 

  • Tholen N, Weidner R, Grande M, Amunts K, Heim S (2011) Eliciting dyslexic symptoms in proficient readers by simulating deficits in grapheme-to-phoneme conversion and visuo-magnocellular processing. Dyslexia 17:268–281

    Article  PubMed  Google Scholar 

  • Thomson J (2007). The contribution of the magnocellular visual pathway to the process of visual word recognition. Ph.D. thesis. http://hdl.handle.net/1842/2676

  • Vandermosten M, Boets B, Wouters J, Ghesquière P (2012) A qualitative and quantitative review of diffusion tensor imaging studies in reading and dyslexia. Neurosci Biobehav Rev 36:1532–1552

    Article  PubMed  Google Scholar 

  • Vellutino FR (1978) Toward an understanding of dyslexia: psychological factors in specific reading disability. In: Benton AL, Pearl D (eds) Dyslexia—an appraisal of current knowledge. Oxford Univ Press, New York, pp 61–111

    Google Scholar 

  • Vigneau M, Beaucousin V, Hervé PY, Jobard G, Petit L, Crivello F, Mellet E, Zago L, Mazoyer B, Tzourio-Mazoyer N (2011) What is right-hemisphere contribution to phonological, lexico-semantic, and sentence processing? Insights from a meta-analysis. Neuroimage 54:577–593

    Article  CAS  PubMed  Google Scholar 

  • Wandell BA (2011) The neurobiological basis of seeing words. Ann N Y Acad Sci 1224:63–80

    Article  PubMed Central  PubMed  Google Scholar 

  • Woollams AM, Lambon Ralph MA, Plaut DC, Patterson K (2010) SD-squared revisited: reply to Coltheart, Tree, and Saunders (2010). Psychol Rev 117:273–281

    Article  PubMed  Google Scholar 

  • Zilles K, Schleicher A, Palomero-Gallagher N, Amunts K (2002) Quantitative analysis of cyto- and receptor architecture of the human brain. In: Mazziotta J, Toga A (eds) Brain mapping, the methods. Academic Press, San Diego, pp 573–602

    Chapter  Google Scholar 

Download references

Acknowledgments

Marion Grande and Stefan Heim were supported by the German Federal Ministry of Education and Research (BMBF Grants 01GJ0613, 01GJ0614, and 01GJ0804).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Heim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heim, S., Weidner, R., von Overheidt, AC. et al. Experimental induction of reading difficulties in normal readers provides novel insights into the neurofunctional mechanisms of visual word recognition. Brain Struct Funct 219, 461–471 (2014). https://doi.org/10.1007/s00429-013-0509-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-013-0509-7

Keywords

Navigation