Skip to main content
Log in

Common and distinct neural inputs to the medial central nucleus of the amygdala and anterior ventrolateral bed nucleus of stria terminalis in rats

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The central nucleus of the amygdala (CEA) and lateral bed nucleus of stria terminalis (BST) are highly interconnected limbic forebrain regions that share similar connectivity with other brain regions that coordinate behavioral and physiological responses to internal and environmental stressors. Their similar connectivity is frequently referred to when describing the CEA and lateral BST together as a unified “central extended amygdala”. However, the CEA and BST reportedly play distinct roles in behavioral and physiological responses associated with fear, anxiety, and social defeat, presumably due to differences in connectivity. To identify common and unique sources of input to the CEA and lateral BST, we performed dual retrograde tracing. Fluorogold and cholera toxin β were iontophoresed into the medial CEA (CEAm) and the anterior ventrolateral BST (BSTvl) of adult male rats. The anatomical distribution of tracer-labeled neurons was mapped throughout the brain. Regions with overlapping populations of CEAm- and BSTvl-projecting neurons were further examined for the presence of double-labeled neurons. Although most regions with input to the mCEA also projected to the BSTvl, and vice versa, cortical and sensory system-related regions projected more robustly to the CEAm, while motor system-related regions primarily innervated the BSTvl. The incidence of double-labeled neurons with collateralized axonal inputs to the CEAm and BSTvl was relatively small (~2 to 13%) and varied across regions, suggesting regional differences in the degree of coordinated CEAm and BSTvl input. The demonstrated similarities and differences in inputs to CEAm and BSTvl provide new anatomical insights into the functional organization of these limbic forebrain regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

ACBsh:

Nucleus accumbens, shell division

aco:

Anterior commissure

AI:

Agranular insular cortex

amc:

Amygdalar capsule

AP:

Area postrema

AStr:

Amygdala-striatal transition area

Aud:

Auditory thalamus

BLAp:

Basolateral amygdalar nucleus, posterior part

BMA:

Basomedial amygdalar nucleus

BST:

Bed nucleus of stria terminalis

pBST:

Posterior subnuclei group of the bed nucleus of stria terminalis

BSTvl:

Ventrolateral subnuclei group of the bed nucleus of stria terminalis

CA1:

Field CA1, Ammon’s horn

cc:

Corpus callosum

CEA:

Central amygdalar nucleus

CEAm:

Central amygdalar nucleus, medial part

CEAl:

Central amygdalar nucleus, lateral part

CLI:

Central linear nucleus raphé

cpd:

Cerebral peduncle

DI:

Dysgranular insular cortex

DMX:

Dorsal motor nucleus of the vagus

DR:

Dorsal nucleus raphé

dscp:

Superior cerebellar peduncle decussation

ec:

External capsule

fx:

Fornix

ILA:

Infralimbic area

IMD:

Intermediodorsal nucleus thalamus

IPAC:

Interstitial nucleus of the posterior limb of the anterior commissure

LHA:

Lateral hypothalamic area

LS:

Lateral septal nucleus

mcp:

Middle cerebellar peduncle

MD:

Mediodorsal nucleus thalamus

ml:

Medial lemniscus

mlf:

Medial longitudinal fascicle

mPFC:

Medial prefrontal cortex

MPO:

Medial preoptic area

MTN:

Midline thalamic nuclei

NLOT:

Nucleus of the lateral olfactory tract

NTS:

Nucleus of the solitary tract

och:

Optic chiasm

opt:

Optic tract

PA:

Posterior amygdalar nucleus

PAGvl:

Periaqueductal gray, ventrolateral division

PB:

Parabrachial nucleus

PBle:

Parabrachial nucleus, external lateral part

PBlv:

Parabrachial nucleus, ventral lateral part

PBm:

Parabrachial nucleus, medial part

PBw:

Parabrachial nucleus, waist part

PL:

Prelimbic area

PPN:

Pedunculopontine nucleus

PSTN:

Parasubthalamic nucleus

PVN:

Paraventricular hypothalamic nucleus

PVT:

Paraventricular thalamic nucleus

py:

Pyramid

scp:

Superior cerebellar peduncle

SI:

Substantia innominata

sm:

Stria medullaris

SNc:

Substantia nigra, compact part

SNr:

Substantia nigra, reticular part

SPFpm:

Subparafascicular nucleus thalamus, parvicellular part, medial division

st:

Stria terminalis

STN:

Subthalamic nucleus

TR:

Postpiriform transition area

V4:

Fourth ventricle

VLM:

Ventrolateral medulla

VP:

Ventral pallidum

VPMpc:

Ventral posteromedial nucleus thalamus, parvicellular part

VTA:

Ventral tegmental area

References

  • Alheid G, Heimer L (1988) New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: the striatopallidal, amygdaloid, and corticopetal components of substantia innominata. Neuroscience 1:1–39

    Article  Google Scholar 

  • Altschuler SM, Bao X, Bieger D, Hopkins DA, Miselis RR (1989) Viscerotopic representation of the upper alimentary tract in the rat: sensory ganglia and nuclei of the solitary and spinal trigeminal tracts. J Comp Neurol 283(2):248–268. doi:10.1002/cne.902830207

    Article  PubMed  CAS  Google Scholar 

  • Bhatnagar S, Dallman M (1998) Neuroanatomical basis for facilitation of hypothalamic-pituitary-adrenal responses to a novel stressor after chronic stress. Neuroscience 84(4):1025–1039

    Article  PubMed  CAS  Google Scholar 

  • Bhatnagar S, Huber R, Nowak N, Trotter P (2002) Lesions of the posterior paraventricular thalamus block habituation of hypothalamic-pituitary-adrenal responses to repeated restraint. J Neuroendocrinol 14(5):403–410. doi:10.1046/j.0007-1331.2002.00792.x

    Article  PubMed  CAS  Google Scholar 

  • Bhatnagar S, Huber R, Lazar E, Pych L, Vining C (2003) Chronic stress alters behavior in the conditioned defensive burying test: role of the posterior paraventricular thalamus. Pharmacol Biochem Behav 76(2):343–349. doi:10.1016/j.pbb.2003.08.005

    Article  PubMed  CAS  Google Scholar 

  • Cecchi M, Khoshbouei H, Javors M, Morilak DA (2002) Modulatory effects of norepinephrine in the lateral bed nucleus of the stria terminalis on behavioral and neuroendocrine responses to acute stress. Neuroscience 112(1):13–21

    Article  PubMed  CAS  Google Scholar 

  • Chiba T, Kayahara T, Nakano K (2001) Efferent projections of infralimbic and prelimbic areas of the medial prefrontal cortex in the Japanese monkey Macaca fuscata. Brain Res 888(1):83–101. doi:10.1016/s0006-8993(00)03013-4

    Article  PubMed  CAS  Google Scholar 

  • Ciccocioppo R, Fedeli A, Economidou D, Policani F, Weiss F, Massi M (2003) The bed nucleus is a neuroanatomical substrate for the anorectic effect of corticotropin-releasing factor and for its reversal by nociceptin/orphanin FQ. J Neurosci 23(28):9445–9451

    PubMed  CAS  Google Scholar 

  • Ciriello J, Schultz CG, Roder S (1994) Collateral axonal projections from ventrolateral medullary non-catecholaminergic neurons to central nucleus of the amygdala. Brain Res 663(2):346–351

    Article  PubMed  CAS  Google Scholar 

  • Ciriello J, Solano-Flores LP, Rosas-Arellano MP, Kirouac GJ, Babic T (2008) Medullary pathways mediating the parasubthalamic nucleus depressor response. Am J Physiol Regul Integr Comp Physiol 294(4):R1276–R1284. doi:10.1152/ajpregu.00437.2007

    Article  PubMed  CAS  Google Scholar 

  • Cullinan WE, Herman JP, Watson SJ (1993) Ventral subicular interaction with the hypothalamic paraventricular nucleus: evidence for a relay in the bed nucleus of the stria terminalis. J Comp Neurol 332(1):1–20. doi:10.1002/cne.903320102

    Article  PubMed  CAS  Google Scholar 

  • Cullinan W, Ziegler D, Herman J (2008) Functional role of local GABAergic influences on the HPA axis. Brain Struct Funct 213(1):63–72. doi:10.1007/s00429-008-0192-2

    Article  PubMed  CAS  Google Scholar 

  • de Olmos J, Heimer L (1999) The concepts of the ventral striatopallidal system and extended amygdala. Annals of the New York Academy of Sciences (Advancing from the Ventral Striatum to the Extended Amygdala: Implications for Neuropsychiatry and Drug Abuse) 877:1–32

  • DeVito JL, Anderson ME, Walsh KE (1980) A horseradish peroxidase study of afferent connections of the globus pallidus in Macaca mulatta. Exp Brain Res 38(1):65–73. doi:10.1007/bf00237932

    Article  PubMed  CAS  Google Scholar 

  • Deyama S, Nakagawa T, Kaneko S, Uehara T, Minami M (2007) Involvement of the bed nucleus of the stria terminalis in the negative affective component of visceral and somatic pain in rats. Behav Brain Res 176:367–371

    Article  PubMed  Google Scholar 

  • Dong HW, Swanson LW (2003) Projections from the rhomboid nucleus of the bed nuclei of the stria terminalis: implications for cerebral hemisphere regulation of ingestive behaviors. J Comp Neurol 463(4):434–472

    Article  PubMed  Google Scholar 

  • Dong HW, Swanson LW (2004) Organization of axonal projections from the anterolateral area of the bed nuclei of the stria terminalis. J Comp Neurol 468(2):277–298

    Article  PubMed  Google Scholar 

  • Dong HW, Swanson LW (2006a) Projections from bed nuclei of the stria terminalis, anteromedial area: cerebral hemisphere integration of neuroendocrine, autonomic, and behavioral aspects of energy balance. J Comp Neurol 494(1):142–178

    Article  PubMed  Google Scholar 

  • Dong HW, Swanson LW (2006b) Projections from bed nuclei of the stria terminalis, dorsomedial nucleus: implications for cerebral hemisphere integration of neuroendocrine, autonomic, and drinking responses. J Comp Neurol 494(1):75–107

    Article  PubMed  Google Scholar 

  • Dong HW, Petrovich GD, Swanson LW (2000) Organization of projections from the juxtacapsular nucleus of the BST: a PHAL study in the rat. Brain Res 859(1):1–14

    Article  PubMed  CAS  Google Scholar 

  • Dong HW, Petrovich GD, Swanson LW (2001a) Topography of projections from amygdala to bed nuclei of the stria terminalis. Brain Res Rev 38(1–2):192–246. doi:10.1016/s0165-0173(01)00079-0

    Article  PubMed  CAS  Google Scholar 

  • Dong HW, Petrovich GD, Watts AG, Swanson LW (2001b) Basic organization of projections from the oval and fusiform nuclei of the bed nuclei of the stria terminalis in adult rat brain. J Comp Neurol 436(4):430–455

    Article  PubMed  CAS  Google Scholar 

  • Fanselow MS, LeDoux JE (1999) Why we think plasticity underlying Pavlovian fear conditioning occurs in the basolateral amygdala. Neuron 23(2):229–232

    Article  PubMed  CAS  Google Scholar 

  • Fendt M, Fanselow MS (1999) The neuroanatomical and neurochemical basis of conditioned fear. Neurosci Biobehav Rev 23(5):743–760

    Article  PubMed  CAS  Google Scholar 

  • Fendt M, Endres T, Apfelbach R (2003) Temporary inactivation of the bed nucleus of the stria terminalis but not of the amygdala blocks freezing induced by trimethylthiazoline, a component of fox feces. J Neurosci 23(1):23–28

    PubMed  CAS  Google Scholar 

  • Fisk GD, Wyss JM (2000) Descending projections of infralimbic cortex that mediate stimulation-evoked changes in arterial pressure. Brain Res 859(1):83–95. doi:10.1016/s0006-8993(00)01935-1

    Article  PubMed  CAS  Google Scholar 

  • Freedman LJ, Cassell MD (1994) Distribution of dopaminergic fibers in the central division of the extended amygdala of the rat. Brain Res 633(1–2):243–252

    Article  PubMed  CAS  Google Scholar 

  • Funk CK, O’Dell LE, Crawford EF, Koob GF (2006) Corticotropin-releasing factor within the central nucleus of the amygdala mediates enhanced ethanol self-administration in withdrawn, ethanol-dependent rats. J Neurosci 26(44):11324–11332. doi:10.1523/jneurosci.3096-06.2006

    Article  PubMed  CAS  Google Scholar 

  • Gauriau C, Bernard J-F (2002) Pain pathways and parabrachial circuits in the rat. Exp Physiol 87(02):251–258. doi:10.1113/eph8702357

    Article  PubMed  Google Scholar 

  • Gaykema RPA, Chen C–C, Goehler LE (2007) Organization of immune-responsive medullary projections to the bed nucleus of the stria terminalis, central amygdala, and paraventricular nucleus of the hypothalamus: evidence for parallel viscerosensory pathways in the rat brain. Brain Res 1130:130–145

    Article  PubMed  CAS  Google Scholar 

  • Geerling JC, Loewy AD (2006) Aldosterone-sensitive neurons in the nucleus of the solitary tract: bidirectional connections with the central nucleus of the amygdala. J Comp Neurol 497(4):646–657

    Article  PubMed  Google Scholar 

  • Goto M, Swanson LW (2004) Axonal projections from the parasubthalamic nucleus. J Comp Neurol 469(4):581–607

    Article  PubMed  Google Scholar 

  • Harris GC, Aston-Jones G (2007) Activation in extended amygdala corresponds to altered hedonic processing during protracted morphine withdrawal. Behav Brain Res 176(2):251–258

    Article  PubMed  CAS  Google Scholar 

  • Heidbreder CA, Groenewegen HJ (2003) The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev 27(6):555–579

    Article  PubMed  Google Scholar 

  • Hurley KM, Herbert H, Moga MM, Saper CB (1991) Efferent projections of the infralimbic cortex of the rat. J Comp Neurol 308(2):249–276. doi:10.1002/cne.903080210

    Article  PubMed  CAS  Google Scholar 

  • Jaferi A, Nowak N, Bhatnagar S (2003) Negative feedback functions in chronically stressed rats: role of the posterior paraventricular thalamus. Physiol Behav 78(3):365–373. doi:10.1016/s0031-9384(03)00014-3

    Article  PubMed  CAS  Google Scholar 

  • Jasnow AM, Davis M, Huhman KL (2004) Involvement of central amygdalar and bed nucleus of the stria terminalis corticotropin-releasing factor in behavioral responses to social defeat. Behav Neurosci 118(5):1052–1061

    Article  PubMed  CAS  Google Scholar 

  • Ju G, Swanson LW (1989) Studies on the cellular architecture of the bed nuclei of the stria terminalis in the rat: I. Cytoarchitecture. J Comp Neurol 280(4):587–602. doi:10.1002/cne.902800409

    Article  PubMed  CAS  Google Scholar 

  • Ju G, Swanson LW, Simerly RB (1989) Studies on the cellular architecture of the bed nuclei of the stria terminalis in the rat: II. Chemoarchitecture. J Comp Neurol 280(4):603–621. doi:10.1002/cne.902800410

    Article  PubMed  CAS  Google Scholar 

  • Kalia M, Sullivan JM (1982) Brainstem projections of sensory and motor components of the vagus nerve in the rat. J Comp Neurol 211(3):248–264. doi:10.1002/cne.902110304

    Article  PubMed  CAS  Google Scholar 

  • Li S, Kirouac GJ (2008) Projections from the paraventricular nucleus of the thalamus to the forebrain, with special emphasis on the extended amygdala. J Comp Neurol 506(2):263–287. doi:10.1002/cne.21502

    Article  PubMed  Google Scholar 

  • Myers EA, Rinaman L (2002) Viscerosensory activation of noradrenergic inputs to the amygdala in rats. Physiol Behav 77:723–729

    Article  PubMed  CAS  Google Scholar 

  • Nagy FZ, Pare D (2008) Timing of impulses from the central amygdala and bed nucleus of the stria terminalis to the brain stem. J Neurophysiol 100(6):3429–3436. doi:10.1152/jn.90936.2008

    Article  PubMed  Google Scholar 

  • Nakagawa T, Yamamoto R, Fujio M, Suzuki Y, Minami M, Satoh M, Kaneko S (2005) Involvement of the bed nucleus of the stria terminalis activated by the central nucleus of the amygdala in the negative affective component of morphine withdrawal in rats. Neuroscience 134:9–19

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Elsevier Academic Press, San Diego

    Google Scholar 

  • Radley JJ, Sawchenko PE (2011) A common substrate for prefrontal and hippocampal inhibition of the neuroendocrine stress response. J Neurosci 31(26):9683–9695. doi:10.1523/jneurosci.6040-10.2011

    Article  PubMed  CAS  Google Scholar 

  • Radley JJ, Arias CM, Sawchenko PE (2006) Regional differentiation of the medial prefrontal cortex in regulating adaptive responses to acute emotional stress. J Neurosci 26(50):12967–12976. doi:10.1523/jneurosci.4297-06.2006

    Article  PubMed  CAS  Google Scholar 

  • Radley JJ, Gosselink KL, Sawchenko PE (2009) A discrete GABAergic relay mediates medial prefrontal cortical inhibition of the neuroendocrine stress response. J Neurosci 29(22):7330–7340. doi:10.1523/jneurosci.5924-08.2009

    Article  PubMed  CAS  Google Scholar 

  • Reilly S (1999) The parabrachial nucleus and conditioned taste aversion. Brain Res Bull 48(3):239–254

    Article  PubMed  CAS  Google Scholar 

  • Reynolds SM, Zahm DS (2005) Specificity in the projections of prefrontal and insular cortex to ventral striatopallidum and the extended amygdala. J Neurosci 25(50):11757–11767. doi:10.1523/jneurosci.3432-05.2005

    Article  PubMed  CAS  Google Scholar 

  • Roder S, Ciriello J (1994) Collateral axonal projections to limbic structures from ventrolateral medullary A1 noradrenergic neurons. Brain Res 638(1–2):182–188

    Article  PubMed  CAS  Google Scholar 

  • Sakai N, Yamamoto T (1998) Role of the medial and lateral parabrachial nucleus in acquisition and retention of conditioned taste aversion in rats. Behav Brain Res 93(1–2):63–70

    Article  PubMed  CAS  Google Scholar 

  • Salazar-Juárez A, Escobar C, Aguilar-Roblero R (2002) Anterior paraventricular thalamus modulates light-induced phase shifts in circadian rhythmicity in rats. Am J Physiol Regul Integr Comp Physiol 283(4):R897–R904. doi:10.1152/ajpregu.00259.2002

    PubMed  Google Scholar 

  • Santiago AC, Shammah-Lagnado SJ (2004) Efferent connections of the nucleus of the lateral olfactory tract in the rat. J Comp Neurol 471(3):314–332. doi:10.1002/cne.20028

    Article  PubMed  Google Scholar 

  • Sesack SR, Deutch AY, Roth RH, Bunney BS (1989) Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: An anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J Comp Neurol 290(2):213–242. doi:10.1002/cne.902900205

    Article  PubMed  CAS  Google Scholar 

  • Shammah-Lagnado SJ, Alheid GF, Heimer L (1999) Afferent connections of the interstitial nucleus of the posterior limb of the anterior commissure and adjacent amygdalostriatal transition area in the rat. Neuroscience 94(4):1097–1123

    Article  PubMed  CAS  Google Scholar 

  • Shammah-Lagnado SJ, Alheid GF, Heimer L (2001) Striatal and central extended amygdala parts of the interstitial nucleus of the posterior limb of the anterior commissure: evidence from tract-tracing techniques in the rat. J Comp Neurol 439(1):104–126

    Article  PubMed  CAS  Google Scholar 

  • Shin J-W, Geerling JC, Loewy AD (2008) Inputs to the ventrolateral bed nucleus of the stria terminalis. J Comp Neurol 511(5):628–657

    Article  PubMed  Google Scholar 

  • Sun N, Roberts L, Cassell MD (1991) Rat central amygdaloid nucleus projections to the bed nucleus of the stria terminalis. Brain Res Bull 27(5):651–662

    Article  PubMed  CAS  Google Scholar 

  • Sved AF, Cano G, Card JP (2001) Neuroanatomical specificity of the circuits controlling sympathetic outflow to different targets. Clin Exp Pharmacol Physiol 28(1–2):115–119

    Article  PubMed  CAS  Google Scholar 

  • Swanson LW (2000) Cerebral hemisphere regulation of motivated behavior. Brain Res 886(1–2):113–164

    Article  PubMed  CAS  Google Scholar 

  • Swanson LW (2004) Brain maps: structure of the rat brain, 3rd edn. Elsevier, San Diego

    Google Scholar 

  • Tanimoto S, Nakagawa T, Yamauchi Y, Minami M, Satoh M (2003) Differential contributions of the basolateral and central nuclei of the amygdala in the negative affective component of chemical somatic and visceral pain in rats. Eur J Neurosci 18(8):2343–2350

    Article  PubMed  Google Scholar 

  • Vertes RP (2004) Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51(1):32–58. doi:10.1002/syn.10279

    Article  PubMed  CAS  Google Scholar 

  • Walker DL, Davis M (1997) Double dissociation between the involvement of the bed nucleus of the stria terminalis and the central nucleus of the amygdala in startle increases produced by conditioned versus unconditioned fear. J Neurosci 17(23):9375–9383

    PubMed  CAS  Google Scholar 

  • Walker DL, Toufexis DJ, Davis M (2003) Role of the bed nucleus of the stria terminalis versus the amygdala in fear, stress, and anxiety. Eur J Pharmacol 463(1–3):199–216

    Article  PubMed  CAS  Google Scholar 

  • Walker DL, Miles LA, Davis M (2009) Selective participation of the bed nucleus of the stria terminalis and CRF in sustained anxiety-like versus phasic fear-like responses. Prog Neuropsychopharmacol Biol Psychiatry 33(8):1291–1308

    Article  PubMed  CAS  Google Scholar 

  • Watson RE, Wiegand SJ, Clough RW, Hoffman GE (1986) Use of cryoprotectant to maintain long-term peptide immunoreactivity and tissue morphology. Peptides 7(1):155–159

    Article  PubMed  CAS  Google Scholar 

  • Zardetto-Smith AM, Beltz TG, Johnson AK (1994) Role of the central nucleus of the amygdala and bed nucleus of the stria terminalis in experimentally-induced salt appetite. Brain Res 645(1–2):123–134. doi:10.1016/0006-8993(94)91645-4

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Vicki Maldovan and Li Cai for their expert technical assistance in this study. This research was supported by grants from the National Institutes of Health (MH59911 and DK063922). Research supported by NIH grant MH59911 to L.R. and NIH grant DK063922 to M.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Rinaman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bienkowski, M.S., Rinaman, L. Common and distinct neural inputs to the medial central nucleus of the amygdala and anterior ventrolateral bed nucleus of stria terminalis in rats. Brain Struct Funct 218, 187–208 (2013). https://doi.org/10.1007/s00429-012-0393-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-012-0393-6

Keywords

Navigation