Skip to main content

Advertisement

Log in

Immunotherapeutic approaches for Alzheimer’s disease in transgenic mouse models

  • Review
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a member of a category of neurodegenerative diseases characterized by the conformational change of a normal protein into a pathological conformer with a high β-sheet content that renders it resistant to degradation and neurotoxic. In the case of AD the normal soluble amyloid β (sAβ) peptide is converted into oligomeric/fibrillar Aβ. The oligomeric forms of Aβ are thought to be the most toxic, while fibrillar Aβ becomes deposited as amyloid plaques and congophilic angiopathy, which both serve as neuropathological markers of the disease. In addition, the accumulation of abnormally phosphorylated tau as soluble toxic oligomers and as neurofibrillary tangles is an essential part of the pathology. Many therapeutic interventions are under investigation to prevent and treat AD. The testing of these diverse approaches to ameliorate AD pathology has been made possible by the existence of numerous transgenic mouse models which each mirror different aspects of AD pathology. Perhaps the most exciting of these approaches is immunomodulation. Vaccination is currently being tried for a range of age associated CNS disorders with great success being reported in many transgenic mouse models. However, there is a discrepancy between these results and current human clinical trials which highlights the limitations of current models and also uncertainties in our understanding of the underlying pathogenesis of AD. No current AD Tg mouse model exactly reflects all aspects of the human disease. Since the underlying etiology of sporadic AD is unknown, the process of creating better Tg models is in constant evolution. This is an essential goal since it will be necessary to develop therapeutic approaches which will be highly effective in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agadjanyan MG, Ghochikyan A, Petrushina I, Vasilevko V, Movsesyan N, Mkrtichyan M, Saing T, Cribbs DH (2005) Prototype Alzheimer’s disease vaccine using the immunodominant B cell epitope from beta-amyloid and promiscuous T cell epitope pan HLA DR-binding peptide. J Immunol 174:1580–1586

    CAS  PubMed  Google Scholar 

  • Aguzzi A (2009) Cell biology: beyond the prion principle. Nature 459:924–925

    CAS  PubMed  Google Scholar 

  • Andorfer C, Kress Y, Espinoza M, de Silva R, Tucker KL, Barde YA, Duff K, Davies P (2003) Hyperphosphorylation and aggregation of tau in mice expressing normal human tau isoforms. J Neurochem 86:582–590

    Google Scholar 

  • Andorfer C, Acker CM, Kress Y, Hof PR, Duff K, Davies P (2005) Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms. J Neurosci 25:5446–5454

    CAS  PubMed  Google Scholar 

  • Arendash GW, King DL, Gordon MN, Morgan D, Hatcher JM, Hope CE, Diamond DM (2001) Progressive, age-related behavioral impairments in transgenic mice carrying both mutant amyloid precursor protein and presenilin-1 transgenes. Brain Res 891:42–53

    CAS  PubMed  Google Scholar 

  • Asuni A, Boutajangout A, Scholtzova H, Knudsen E, Li Y, Quartermain D, Frangione B, Wisniewski T, Sigurdsson EM (2006) Aβ derivative vaccination in alum adjuvant prevents amyloid deposition and does not cause brain microhemorrhages in Alzheimer’s model mice. Eur J Neurosci 24:2530–2542

    PubMed  Google Scholar 

  • Asuni AA, Boutajangout A, Quartermain D, Sigurdsson EM (2007) Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J Neurosci 27:9115–9129

    CAS  PubMed  Google Scholar 

  • Attems J, Jellinger KA (2004) Only cerebral capillary amyloid angiopathy correlates with Alzheimer pathology—a pilot study. Acta Neuropathol (Berl) 107:83–90

    Google Scholar 

  • Bales KR, Verina T, Dodel RC, Du YS, Altstiel L, Bender M, Hyslop P, Johnstone EM, Little SP, Cummins DJ, Piccardo P, Ghetti B, Paul SM (1997) Lack of apolipoprotein E dramatically reduces amyloid β-peptide deposition. Nat Gen 17:263–264

    CAS  Google Scholar 

  • Bales KR, Verina T, Cummins DJ, Du Y, Dodel RC, Saura J, Fishman CE, DeLong CA, Piccardo P, Petegnief V, Ghetti B, Paul SM (1999) Apolipoprotein E is essential for amyloid deposition in the APPV717F transgenic mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 96:15233–15238

    CAS  PubMed  Google Scholar 

  • Bales KR, Liu F, Wu S, Lin S, Koger D, DeLong C, Hansen JC, Sullivan PM, Paul SM (2009) Human APOE isoform-dependent effects on brain beta-amyloid levels in PDAPP transgenic mice. J Neurosci 29:6771–6779

    CAS  PubMed  Google Scholar 

  • Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Lieberburg I, Motter R, Nguyen M, Soriano F, Vasquez N, Weiss K, Welch B, Seubert P, Schenk D, Yednock T (2000) Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of alzheimer disease. Nat Med 6:916–919

    CAS  PubMed  Google Scholar 

  • Baumann K, Mandelkow EM, Biernat J, Piwnica-Worms H, Mandelkow E (1993) Abnormal Alzheimer-like phosphorylation of tau-protein by cyclin-dependent kinases cdk2 and cdk5. FEBS Lett 336:417–424

    CAS  PubMed  Google Scholar 

  • Bayer AJ, Bullock R, Jones RW, Wilkinson D, Paterson KR, Jenkins L, Millais SB, Donoghue S (2005) Evaluation of the safety and immunogenicity of synthetic Aβ42 (AN1792) in patients with AD. Neurology 64:94–101

    CAS  PubMed  Google Scholar 

  • Billings LM, Oddo S, Green KN, McGaugh JL, LaFerla FM (2005) Intraneuronal Abeta causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice. Neuron 45:675–688

    CAS  PubMed  Google Scholar 

  • Biran Y, Masters CL, Barnham KJ, Bush AI, Adlard PA (2009) Pharmacotherapeutic targets in Alzheimer’s disease. J Cell Mol Med 13:61–86

    CAS  PubMed  Google Scholar 

  • Blurton-Jones M, LaFerla FM (2006) Pathways by which Abeta facilitates tau pathology. Curr Alzheimer Res 3:437–448

    CAS  PubMed  Google Scholar 

  • Boche D, Nicoll JA (2008) The role of the immune system in clearance of Abeta from the brain. Brain Pathol 18:267–278

    PubMed  Google Scholar 

  • Bolmont T, Clavaguera F, Meyer-Luehmann M, Herzig MC, Radde R, Staufenbiel M, Lewis J, Hutton M, Tolnay M, Jucker M (2007) Induction of tau pathology by intracerebral infusion of amyloid-beta -containing brain extract and by amyloid-beta deposition in APP × Tau transgenic mice. Am J Pathol 171:2012–2020

    CAS  PubMed  Google Scholar 

  • Bombois S, Maurage CA, Gompel M, Deramecourt V, kowiak-Cordoliani MA, Black RS, Lavielle R, Delacourte A, Pasquier F (2007) Absence of beta-amyloid deposits after immunization in Alzheimer disease with Lewy body dementia. Arch Neurol 64:583–587

    PubMed  Google Scholar 

  • Borchelt DR, Thinakaran G, Eckman CB, Lee MK, Davenport F, Ratovitsky T, Prada CM, Kim G, Seekins S, Yager D, Slunt HH, Wang R, Seeger M, Levey AI, Gandy SE, Copeland NG, Jenkins NA, Price DL, Younkin SG (1996) Familial Alzheimer’s disease-linked presenilin 1 variants elevate Aβ1-42/1-40 ratio in vitro and in vivo. Neuron 17:1005–1013

    CAS  PubMed  Google Scholar 

  • Borchelt DR, Ratovitski T, Van Lare J, Lee MK, Gonzales V, Jenkins NA, Copeland NG, Price DL, Sisodia SS (1997) Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron 19:939–945

    CAS  PubMed  Google Scholar 

  • Boutajangout A, Frangione B, Brion JP, Wisniewski T, Sigurdsson EM (2008) Presenilin 1mutation promotes tau phosphorylation and aggregation in a novel Alzheimer’s disease mouse model. Alz Dement 4:T185

    Google Scholar 

  • Boutajangout A, Goni F, Knudsen E, Schreiber F, Asuni A, Quartermain D, Frangione B, Chabalgoity A, Wisniewski T, Sigurdsson EM (2009) Diminished amyloid-beta burden in Tg2576 mice following a prophylactic oral immunization with a Salmonella-based amyloid-beta derivative vaccine. J Alzheimers Dis [Epub ahead of print]

  • Brion JP (2006) Immunological demonstration of tau protein in neurofibrillary tangles of Alzheimer’s disease. J Alzheimers Dis 9:177–185

    CAS  PubMed  Google Scholar 

  • Brion JP, Flament-Durand J, Dustin P (1986) Alzheimer’s disease and tau proteins. Lancet 2:1098

    CAS  PubMed  Google Scholar 

  • Brody DL, Holtzman DM (2008) Active and passive immunotherapy for neurodegenerative diseass. Annu Rev Neurosci 31:175–193

    CAS  PubMed  Google Scholar 

  • Brouwers N, Sleegers K, Van BC (2008) Molecular genetics of Alzheimer’s disease: an update. Ann Med 40:562–583

    CAS  PubMed  Google Scholar 

  • Buee L, Bussiere T, Buee-Scherrer V, Delacourte A, Hof PR (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 33:95–130

    CAS  PubMed  Google Scholar 

  • Butner KA, Kirschner MW (1991) Tau protein binds to microtubules through a flexible array of distributed weak sites. J Cell Biol 115:717–730

    CAS  PubMed  Google Scholar 

  • Butovsky O, Kunis G, Koronyo-Hamaoui M, Schwartz M (2007) Selective ablation of bone marrow-derived dendritic cells increases amyloid plaques in a mouse Alzheimer’s disease model. Eur J Neurosci 26:413–416

    PubMed  Google Scholar 

  • Calhoun ME, Wiederhold KH, Abramowski D, Phinney AL, Probst A, Sturchler-Pierrat C, Staufenbiel M, Sommer B, Jucker M (1998) Neuron loss in APP transgenic mice. Nature 396:755–756

    Google Scholar 

  • Calon F, Lim GP, Yang F, Morihara T, Teter B, Ubeda O, Rostaing P, Triller A, Salem N Jr, Ashe KH, Frautschy SA, Cole GM (2004) Docosahexaenoic acid protects from dendritic pathology in an Alzheimer’s disease mouse model. Neuron 43:633–645

    CAS  PubMed  Google Scholar 

  • Casas C, Sergeant N, Itier JM, Blanchard V, Wirths O, van der Kolk N, Vingtdeux V, van de SE, Ret G, Canton T, Drobecq H, Clark A, Bonici B, Delacourte A, Benavides J, Schmitz C, Tremp G, Bayer TA, Benoit P, Pradier L (2004) Massive CA1/2 neuronal loss with intraneuronal and N-terminal truncated Abeta42 accumulation in a novel Alzheimer transgenic model. Am J Pathol 165:1289–1300

  • Castellani RJ, Lee HG, Zhu X, Perry G, Smith MA (2008) Alzheimer disease pathology as a host response. J Neuropathol Exp Neurol 67:523–531

    CAS  PubMed  Google Scholar 

  • Chackerian B, Rangel M, Hunter Z, Peabody DS (2006) Virus and virus-like particle-based immunogens for Alzheimer’s disease induce antibody responses against amyloid-beta without concomitant T cell responses. Vaccine 24:6321–6331

    CAS  PubMed  Google Scholar 

  • Chishti MA, Yang DS, Janus C, Phinney AL, Horne P, Pearson J, Strome R, Zuker N, Loukides J, French J, Turner S, Lozza G, Grilli M, Kunicki S, Morissette C, Paquette J, Gervais F, Bergeron C, Fraser PE, Carlson GA, George-Hyslop PS, Westaway D (2001) Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. J Biol Chem 276:21562–21570

    CAS  PubMed  Google Scholar 

  • Citron M, Westaway D, Xia WM, Carlson G, Diehl T, Levesque G, Johnson-Wood K, Lee M, Seubert P, Davis A, Kholodenko D, Motter R, Sherrington R, Perry B, Yao H, Strome R, Lieberburg I, Rommens J, Kim S, Schenk D, Fraser P, Hyslop PS, Selkoe DJ (1997) Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid β-protein in both transfected cells and transgenic mice. Nat Med 3:67–72

    CAS  PubMed  Google Scholar 

  • Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A, Fraser G, Stalder AK, Beibel M, Staufenbiel M, Jucker M, Goedert M, Tolnay M (2009) Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11(3):909–913

    Google Scholar 

  • Colton CA, Vitek MP, Wink DA, Xu Q, Cantillana V, Previti ML, van Nostrand WE, Weinberg JB, Dawson H (2006) NO synthase 2 (NOS2) deletion promotes multiple pathologies in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 103:12867–12872

    CAS  PubMed  Google Scholar 

  • Cribbs DH, Ghochikyan A, Vasilevko V, Tran M, Petrushina I, Sadzikava N, Babikyan D, Kesslak P, Kieber-Emmons T, Cotman CW, Agadjanyan MG (2003) Adjuvant-dependent modulation of Th1 and Th2 responses to immunization with beta-amyloid. Int Immunol 15:505–514

    CAS  PubMed  Google Scholar 

  • Davis J, Xu F, Deane R, Romanov G, Previti ML, Zeigler K, Zlokovic BV, van Nostrand WE (2004) Early-onset and robust cerebral microvascular accumulation of amyloid beta-protein in transgenic mice expressing low levels of a vasculotropic Dutch/Iowa mutant form of amyloid beta-protein precursor. J Biol Chem 279:20296–20306

    CAS  PubMed  Google Scholar 

  • Davis J, Xu F, Miao J, Previti ML, Romanov G, Ziegler K, van Nostrand WE (2006) Deficient cerebral clearance of vasculotropic mutant Dutch/Iowa Double A beta in human A betaPP transgenic mice. Neurobiol Aging 27:946–954

    CAS  PubMed  Google Scholar 

  • DeMattos RB, Bales KR, Cummins DJ, Dodart JC, Paul SM, Holtzman DM (2001) Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 98:8850–8855

    CAS  PubMed  Google Scholar 

  • Dodart JC, Bales KR, Gannon KS, Greene SJ, DeMattos RB, Mathis C, DeLong CA, Wu S, Wu X, Holtzman DM, Paul SM (2002) Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer’s disease model. Nat Neurosci 5:452–457

    CAS  PubMed  Google Scholar 

  • Domnitz SB, Robbins EM, Hoang AW, Garcia-Alloza M, Hyman BT, Rebeck GW, Greenberg SM, Bacskai BJ, Frosch MP (2005) Progression of cerebral amyloid angiopathy in transgenic mouse models of Alzheimer disease. J Neuropathol Exp Neurol 64:588–594

    CAS  PubMed  Google Scholar 

  • Duff K, Eckman C, Zehr C, Yu X, Prada CM, Perez-Tur J, Hutton M, Buee L, Harigaya Y, Yager D, Morgan D, Gordon MN, Holcomb L, Refolo L, Zenk B, Hardy J, Younkin S (1996) Increased amyloid-β42(43) in brains of mice expressing mutant presenilin 1. Nature 383:710–713

    CAS  PubMed  Google Scholar 

  • Dziewczapolski G, Glogowski CM, Masliah E, Heinemann SF (2009) Deletion of the alpha 7 nicotinic acetylcholine receptor gene improves cognitive deficits and synaptic pathology in a mouse model of Alzheimer’s disease. J Neurosci 29:8805–8815

    CAS  PubMed  Google Scholar 

  • Egashira N, Iwasaki K, Takashima A, Watanabe T, Kawabe H, Matsuda T, Mishima K, Chidori S, Nishimura R, Fujiwara M (2005) Altered depression-related behavior and neurochemical changes in serotonergic neurons in mutant R406 W human tau transgenic mice. Brain Res 1059:7–12

    CAS  PubMed  Google Scholar 

  • Eidenmuller J, Fath T, Maas T, Pool M, Sontag E, Brandt R (2001) Phosphorylation-mimicking glutamate clusters in the proline-rich region are sufficient to simulate the functional deficiencies of hyperphosphorylated tau protein. Biochem J 357:759–767

    CAS  PubMed  Google Scholar 

  • Eisele YS, Bolmont T, Heikenwalder M, Langer F, Jacobson LH, Yan ZX, Roth K, Aguzzi A, Staufenbiel M, Walker LC, Jucker M (2009) Induction of cerebral beta-amyloidosis: intracerebral versus systemic Abeta inoculation. Proc Natl Acad Sci USA 106:12926–12931

    CAS  PubMed  Google Scholar 

  • El KJ, Toft M, Hickman SE, Means TK, Terada K, Geula C, Luster AD (2007) Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med 13:432–438

    Google Scholar 

  • Fath T, Eidenmuller J, Brandt R (2002) Tau-mediated cytotoxicity in a pseudohyperphosphorylation model of Alzheimer’s disease. J Neurosci 22:9733–9741

    CAS  PubMed  Google Scholar 

  • Ferrer I, Boada RM, Sanchez Guerra ML, Rey MJ, Costa-Jussa F (2004) Neuropathology and pathogenesis of encephalitis following amyloid-beta immunization in Alzheimer’s disease. Brain Pathol 14:11–20

    CAS  PubMed  Google Scholar 

  • Frackowiak J, Wisniewski HM, Wegiel J, Merz GS, Iqbal K, Wang KC (1992) Ultrastructure of the microglia that phagocytose amyloid and the microglia that produce beta-amyloid fibrils. Acta Neuropathol 84:225–233

    CAS  PubMed  Google Scholar 

  • Frautschy SA, Yang F, Irrizarry M, Hyman B, Saido TC, Hsiao K, Cole GM (1998) Microglial response to amyloid plaques in APPsw transgenic mice. Am J Pathol 152:307–317

    CAS  PubMed  Google Scholar 

  • Frenkel D, Dewachter I, Van LF, Solomon B (2003) Reduction of beta-amyloid plaques in brain of transgenic mouse model of Alzheimer’s disease by EFRH-phage immunization. Vaccine 21:1060–1065

    CAS  PubMed  Google Scholar 

  • Frost B, Jacks RL, Diamond MI (2009) Propagation of tau misfolding from the outside to the inside of a cell. J Biol Chem 284:12845–12852

    CAS  PubMed  Google Scholar 

  • Fryer JD, Taylor JW, DeMattos RB, Bales KR, Paul SM, Parsadanian M, Holtzman DM (2003) Apolipoprotein E markedly facilitates age-dependent cerebral amyloid angiopathy and spontaneous hemorrhage in amyloid precursor protein Transgenic mice. J Neurosci 23:7889–7896

    CAS  PubMed  Google Scholar 

  • Fryer JD, Simmons K, Parsadanian M, Bales KR, Paul SM, Sullivan PM, Holtzman DM (2005) Human apolipoprotein E4 alters the amyloid-beta 40:42 ratio and promotes the formation of cerebral amyloid angiopathy in an amyloid precursor protein transgenic model. J Neurosci 25:2803–2810

    CAS  PubMed  Google Scholar 

  • Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C, Carr T, Clemens J, Donaldson T, Gillespie F, Guido T, Hagoplan S, Johnson-Wood K, Kan K, Lee M, Leibowitz P, Lieberburg I, Little S, Masliah E, McConlogue L, Montoya-Zavala M, Mucke L, Paganini L, Penniman E, Power M, Schenk D, Seubert P, Snyder B, Soriano F, Tan H, Vitale J, Wadsworth S, Wolozin B, Zhao J (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature 373:523–527

    CAS  PubMed  Google Scholar 

  • Gendron TF, Petrucelli L (2009) The role of tau in neurodegeneration. Mol Neurodegener 4:13

    PubMed  Google Scholar 

  • Gilman S, Koller M, Black RS, Jenkins L, Griffith SG, Fox NC, Eisner L, Kirby L, Boada Rovira M, Forette F, Orgogozo JM (2005) Clinical effects of Aβ immunization (AN1792) in patients with AD in an interupted trial. Neurol 64:1553–1562

    CAS  Google Scholar 

  • Giuffrida ML, Caraci F, Pignataro B, Cataldo S, De BP, Bruno V, Molinaro G, Pappalardo G, Messina A, Palmigiano A, Garozzo D, Nicoletti F, Rizzarelli E, Copani A (2009) Beta-amyloid monomers are neuroprotective. J Neurosci 29:10582–10587

    CAS  PubMed  Google Scholar 

  • Glabe CG (2008) Structural classification of toxic amyloid oligomers. J Biol Chem 283:29639–29643

    CAS  PubMed  Google Scholar 

  • Goedert M, Wischik CM, Crowther RA, Walker JE, Klug A (1988) Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc Natl Acad Sci USA 85:4051–4055

    CAS  PubMed  Google Scholar 

  • Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA (1989) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3:519–526

    CAS  PubMed  Google Scholar 

  • Goni F, Prelli F, Schreiber F, Scholtzova H, Chung E, Kascsak R, Brown DR, Sigurdsson EM, Chabalgoity JA, Wisniewski T (2008) High titers of mucosal and systemic anti-PrP antibodies abrogates oral prion infection in mucosal vaccinated mice. Neurosci. 153:679–686

    CAS  Google Scholar 

  • Gotz J, Ittner LM (2008) Animal models of Alzheimer’s disease and frontotemporal dementia. Nat Rev Neurosci 9:532–544

    PubMed  Google Scholar 

  • Gotz J, Barmettler R, Ferrari A, Goedert M, Probst A, Nitsch RM (2000) In vivo analysis of wild-type and FTDP-17 tau transgenic mice. Ann N Y Acad Sci 920:126–133

    CAS  PubMed  Google Scholar 

  • Gotz J, Chen F, Barmettler R, Nitsch RM (2001a) Tau filament formation in transgenic mice expressing P301L tau. J Biol Chem 276:529–534

    CAS  PubMed  Google Scholar 

  • Gotz J, Chen F, van Dorpe J, Nitsch RM (2001b) Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils. Science 293:1491–1495

    Google Scholar 

  • Grabowski TJ, Cho HS, Vonsattel JP, Rebeck GW, Greenberg SM (2001) Novel amyloid precursor protein mutation in an Iowa family with dementia and severe cerebral amyloid angiopathy. Ann Neurol 49:697–705

    CAS  PubMed  Google Scholar 

  • Hamdane M, Sambo AV, Delobel P, Begard S, Violleau A, Delacourte A, Bertrand P, Benavides J, Buee L (2003) Mitotic-like tau phosphorylation by p25-Cdk5 kinase complex. J Biol Chem 278:34026–34034

    CAS  PubMed  Google Scholar 

  • Hara H, Monsonego A, Yuasa K, Adachi Y, Xiao X, Takeda S, Takahashi K, Weiner HL, Tabira T (2004) Development of a safe oral Ab vaccine using recombinant adeno-associated virus vector for Alzheimer’s disease. J Alzheimers Dis 6:483–488

    CAS  PubMed  Google Scholar 

  • Hardy J (2006) A hundred years of Alzheimer’s disease research. Neuron 52:3–13

    CAS  PubMed  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    CAS  PubMed  Google Scholar 

  • Head E, Pop V, Vasilevko V, Hill M, Saing T, Sarsoza F, Nistor M, Christie LA, Milton S, Glabe C, Barrett E, Cribbs D (2008) A two-year study with fibrillar beta-amyloid (Abeta) immunization in aged canines: effects on cognitive function and brain Abeta. J Neurosci 28:3555–3566

    CAS  PubMed  Google Scholar 

  • Hock C, Konietzko U, Paspassotiropoulos A, Wollmer A, Streffer J, von Rotz RC, Davey G, Moritz E, Nitsch RM (2002) Generation of antibodies specific for β-amyloid by vaccination of patients with Alzheimer disease. Nat Med 8:1270–1276

    CAS  PubMed  Google Scholar 

  • Hock C, Konietzko U, Straffer JR, Tracy J, Signorell A, Muller-Tillmanns B, Lemke U, Henke K, Moritz E, Garcia E, Axel Wollmar M, Umbricht D, de Quervain DJF, Hofmann M, Maddalena A, Papassotiropoulos A, Nitsch RM (2003) Antibodies against β-amyloid slow cognitive decline in Alzheimer’s disease. Neuron 38:547–554

    CAS  PubMed  Google Scholar 

  • Holcomb L, Gordon MN, McGowan E, Yu X, Benkovic S, Jantzen P, Saad WK, Mueller R, Morgan D, Sanders S, Zehr C, O’Campo K, Hardy J, Prada CM, Eckman C, Younkin S, Hsiao K, Duff K (1998) Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat Med 4:97–100

    CAS  PubMed  Google Scholar 

  • Holmes C, Boche D, Wilkinson D, Yadegarfar G, Hopkins V, Bayer A, Jones RW, Bullock R, Love S, Neal JW, Zotova E, Nicoll JAR (2008) Long term effects of Aβ42 immunization in Alzheimer’s disease: immune response, plaque removal and clinical function. Lancet 372:216–223

    CAS  PubMed  Google Scholar 

  • Holtzman DM, Bales KR, Wu S, Bhat P, Parsadanian M, Fagan AM, Chang LK, Sun Y, Paul SM (1999) Expression of human apolipoprotein E reduces amyloid-beta deposition in a mouse model of Alzheimer’s disease. J Clin Invest 103:R15–R21

    CAS  PubMed  Google Scholar 

  • Holtzman DM, Fagan AM, Mackey B, Tenkova T, Sartorius L, Paul SM, Bales KR, Hsiao Ashe K, Irizarry MC, Hyman BT (2000) Apolipoprotein E facilitates neuritic and cerebrovascular plaque formation in an Alzheimer’s disease model. Ann Neurol 47:739–747

    CAS  PubMed  Google Scholar 

  • Hsiao KK, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G (1996) Correlative memory deficits, Aβ elevation and amyloid plaques in transgenic mice. Science 274:99–102

    CAS  PubMed  Google Scholar 

  • Iqbal K, Liu F, Gong CX, Alonso AC, Grundke-Iqbal I (2009) Mechanisms of tau-induced neurodegeneration. Acta Neuropathol 118:53–69

    CAS  PubMed  Google Scholar 

  • Irizarry MC, McNamara M, Fedorchak K, Hsiao K, Hyman BT (1997a) APPSw transgenic mice develop age-related Aβ deposits and neuropil abnormalities, but no neuronal loss in CA1. J Neuropathol Exp Neurol 56:965–973

    CAS  PubMed  Google Scholar 

  • Irizarry MC, Soriano F, McNamara M, Page KJ, Schenk D, Games D, Hyman BT (1997b) Aβ deposition is associated with neuropil changes, but not with overt neuronal loss in the human amyloid precursor protein V717F (PDAPP) transgenic mouse. J Neurosci 17:7053–7059

    CAS  PubMed  Google Scholar 

  • Ishihara T, Zhang B, Higuchi K, Yoshiyama Y, Trojanowski JQ, Lee VM (2001) Age-dependent induction of congophilic neurofibrillary tau inclusions in tau transgenic mice. Am J Pathol 158:555–562

    CAS  PubMed  Google Scholar 

  • Janus C, Pearson J, McLaurin J, Mathews PM, Jiang Y, Schmidt SD, Chishti MA, Horne P, Heslin D, French J, Mount HT, Nixon RA, Mercken M, Bergeron C, Fraser PE, George-Hyslop P, Westaway D (2000) Aβ peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature 408:979–982

    CAS  PubMed  Google Scholar 

  • Jellinger KA (2002) Alzheimer disease and cerebrovascular pathology: an update. J Neural Transm 109:813–836

    CAS  PubMed  Google Scholar 

  • Jennings GT, Bachmann MF (2008) The coming of age of virus-like particle vaccines. Biol. Chem. 389:521–536

    CAS  PubMed  Google Scholar 

  • Jucker M, Heppner FL (2008) Cerebral and peripheral amyloid phagocytes—an old liaison with a new twist. Neuron 59:8–10

    CAS  PubMed  Google Scholar 

  • Kawarabayashi T, Younkin LH, Saido TC, Shoji M, Ashe KH, Younkin SG (2001) Age-dependent changes in brain, CSF, and plasma amyloid (beta) protein in the Tg2576 transgenic mouse model of Alzheimer’s disease. J Neurosci 21:372–381

    CAS  PubMed  Google Scholar 

  • Kayed R, Jackson GR (2009) Prefilament tau species as potential targets for immunotherapy for Alzheimer disease and related disorders. Curr Opin Immunol 21:359–363

    CAS  PubMed  Google Scholar 

  • Kim J, Basak JM, Holtzman DM (2009) The role of apolipoprotein E in Alzheimer’s disease. Neuron 63:287–303

    CAS  PubMed  Google Scholar 

  • King ME, Kan HM, Baas PW, Erisir A, Glabe CG, Bloom GS (2006) Tau-dependent microtubule disassembly initiated by prefibrillar beta-amyloid. J Cell Biol 175:541–546

    CAS  PubMed  Google Scholar 

  • Klybin I, Betts V, Blennow K, Zetterberg H, Wallin A, Lemere CA, Cullen WK, Welzel A, Peng Y, Wisniewski T, Selkoe DJ, Anwyl R, Walsh DM, Rowan MJ (2008) Aβ dimer-containing human cerebrospinal fluid disrupts synaptic plasticity: prevention by systemic passive immunization. J Neurosci 28:4231–4237

    Google Scholar 

  • Kok E, Haikonen S, Luoto T, Huhtala H, Goebeler S, Haapasalo H, Karhunen PJ (2009) Apolipoprotein E-dependent accumulation of Alzheimer disease-related lesions begins in middle age. Ann Neurol 65:650–657

    CAS  PubMed  Google Scholar 

  • Kramer JH, Reed BR, Mungas D, Weiner MW, Chui HC (2002) Executive dysfunction in subcortical ischaemic vascular disease. J Neurol Neurosurg Psychiatry 72:217–220

    CAS  PubMed  Google Scholar 

  • Kumar-Singh S (2009) Hereditary and sporadic forms of abeta-cerebrovascular amyloidosis and relevant transgenic mouse models. Int J Mol Sci 10:1872–1895

    CAS  PubMed  Google Scholar 

  • Kumar-Singh S, Dewachter I, Moechars D, Lubke U, De JC, Ceuterick C, Checler F, Naidu A, Cordell B, Cras P, Van BC, Van LF (2000) Behavioral disturbances without amyloid deposits in mice overexpressing human amyloid precursor protein with Flemish (A692G) or Dutch (E693Q) mutation. Neurobiol Dis 7:9–22

    CAS  PubMed  Google Scholar 

  • Lambert MP, Velasco PT, Chang L, Viola KL, Fernandez S, Lacor PN, Khuon D, Gong Y, Bigio EH, Shaw P, De Felice FG, Krafft GA, Klein WL (2007) Monoclonal antibodies that target pathological assemblies of Abeta. J Neurochem 100:23–35

    CAS  PubMed  Google Scholar 

  • Lambert MP, Velasco PT, Viola KL, Klein WL (2009) Targeting generation of antibodies specific to conformational epitopes of amyloid beta-derived neurotoxins. CNS. Neurol Disord Drug Targets 8:65–81

    CAS  Google Scholar 

  • Lavie V, Becker M, Cohen-Kupiec R, Yacoby I, Koppel R, Wedenig M, Hutter-Paier B, Solomon B (2004) EFRH-phage immunization of Alzheimer’s disease animal model improves behavioral performance in morris water maze trials. J Mol Neurosci 24:105–114

    CAS  PubMed  Google Scholar 

  • Lee VM, Kenyon TK, Trojanowski JQ (2005) Transgenic animal models of tauopathies. Biochim Biophys Acta 1739:251–259

    CAS  PubMed  Google Scholar 

  • Lee EB, Leng LZ, Zhang B, Kwong L, Trojanowski JQ, Abel T, Lee VM (2006) Targeting amyloid-beta peptide (Abeta) oligomers by passive immunization with a conformation-selective monoclonal antibody improves learning and memory in Abeta precursor protein (APP) transgenic mice. J Biol Chem 281:4292–4299

    CAS  PubMed  Google Scholar 

  • Lemere CA, Blusztajn JK, Yamaguchi H, Wisniewski T, Saido TC, Selkoe DJ (1996) Sequence of deposition of heterogeneous amyloid β-peptides and APO E in Down syndrome: implications for initial events in amyloid plaque formation. Neurobiol Dis 3:16–32

    CAS  PubMed  Google Scholar 

  • Lemere CA, Maron R, Selkoe DJ, Weiner HL (2001) Nasal vaccination with beta-amyloid peptide for the treatment of Alzheimer’s disease. DNA Cell Biol 20:705–711

    CAS  PubMed  Google Scholar 

  • Lemere CA, Spooner ET, Leverone JF, Mori C, Clements JD (2002) Intranasal immunotherapy for the treatment of Alzheimer’s disease: Escherichia coli LT and LT(R192G) as mucosal adjuvants. Neurobiol Aging 23:991–1000

    CAS  PubMed  Google Scholar 

  • Lesne S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440:352–357

    CAS  PubMed  Google Scholar 

  • Levites Y, Das P, Price RW, Rochette MJ, Kostura LA, McGowan EM, Murphy MP, Golde TE (2006) Anti-Aβ42 and anti-Aβ40 specific mAbs attenuate amyloid deposition in an Alzheimer disease mouse model. J Clin Invest 116:193–201

    CAS  PubMed  Google Scholar 

  • Levy E, Carman MD, Fernandez-Madrid I, Lieberburg I, Power MD, van Duinen SG, Bots GThAM, Luyendijk W, Frangione B (1990) Mutation of the Alzheimer’s disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science 248:1124–1126

    CAS  PubMed  Google Scholar 

  • Lewis J, Dickson D, Lin WL, Chisholm L, Corral A, Jones G, Yen SH, Sahara N, Skipper L, Yager D, Eckman C, Hardy J, Hutton M, McGowan E (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293:1487–1491

    CAS  PubMed  Google Scholar 

  • Magnani E, Fan J, Gasparini L, Golding M, Williams M, Schiavo G, Goedert M, Amos LA, Spillantini MG (2007) Interaction of tau protein with the dynactin complex. EMBO J 26:4546–4554

    CAS  PubMed  Google Scholar 

  • Mahley RW, Huang Y (2009) Alzheimer disease: multiple causes, multiple effects of apolipoprotein E4, and multiple therapeutic approaches. Ann Neurol 65:623–625

    PubMed  Google Scholar 

  • Maier M, Seabrook TJ, Lazo ND, Jiang L, Das P, Janus C, Lemere CA (2006) Short amyloid-beta (Abeta) immunogens reduce cerebral Abeta load and learning deficits in an Alzheimer’s disease mouse model in the absence of an Abeta-specific cellular immune response. J Neurosci 26:4717–4728

    CAS  PubMed  Google Scholar 

  • Mamikonyan G, Necula M, Mkrtichyan M, Ghochikyan A, Petrushina I, Movsesyan N, Mina E, Kiyatkin A, Glabe CG, Cribbs DH, Agadjanyan MG (2007) Anti-A beta 1–11 antibody binds to different beta-amyloid species, inhibits fibril formation, and disaggregates preformed fibrils but not the most toxic oligomers. J Biol Chem 282:22376–22386

    CAS  PubMed  Google Scholar 

  • Masliah E, Sisk A, Mallory M, Games D (2001) Neurofibrillary pathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. J Neuropathol Exp Neurol 60:357–368

    CAS  PubMed  Google Scholar 

  • Masliah E, Hansen L, Adame A, Crews L, Bard F, Lee C, Seubert P, Games D, Kirby L, Schenk D (2005a) Aβ vaccination effects on plaque pathology in the absence of encephalitis in Alzheimer disease. Neurology 64:129–131

    CAS  PubMed  Google Scholar 

  • Masliah E, Rockenstein E, Adame A, Alford M, Crews L, Hashimoto M, Seubert P, Lee M, Goldstein J, Chilcote T, Games D, Schenk D (2005b) Effects of alpha-synuclein immunization in a mouse model of Parkinson’s disease. Neuron 46:857–868

    CAS  PubMed  Google Scholar 

  • McGowan E, Pickford F, Kim J, Onstead L, Eriksen J, Yu C, Skipper L, Murphy MP, Beard J, Das P, Jansen K, Delucia M, Lin WL, Dolios G, Wang R, Eckman CB, Dickson DW, Hutton M, Hardy J, Golde T (2005) Abeta42 is essential for parenchymal and vascular amyloid deposition in mice. Neuron 47:191–199

    CAS  PubMed  Google Scholar 

  • McGowan E, Eriksen J, Hutton M (2006) A decade of modeling Alzheimer’s disease in transgenic mice. Trends Genet 22:281–289

    CAS  PubMed  Google Scholar 

  • McKee AC, Carreras I, Hossain L, Ryu H, Klein WL, Oddo S, LaFerla FM, Jenkins BG, Kowall NW, Dedeoglu A (2008) Ibuprofen reduces Abeta, hyperphosphorylated tau and memory deficits in Alzheimer mice. Brain Res 1207:225–236

    CAS  PubMed  Google Scholar 

  • McLaurin J, Cecal R, Kierstead ME, Tian X, Phinney AL, Manea M, French JE, Lambermon MH, Darabie AA, Brown ME, Janus C, Chishti MA, Horne P, Westaway D, Fraser PE, Mount HT, Przybylski M, St George-Hyslop P (2002) Therapeutically effective antibodies against amyloid-beta peptide target amyloid-beta residues 4–10 and inhibit cytotoxicity and fibrillogenesis. Nat Med 8:1263–1269

    CAS  PubMed  Google Scholar 

  • Meyer-Luehmann M, Coomaraswamy J, Bolmont T, Kaeser S, Schaefer C, Kilger E, Neuenschwander A, Abramowski D, Frey P, Jaton AL, Vigouret JM, Paganetti P, Walsh DM, Mathews PM, Ghiso J, Staufenbiel M, Walker LC, Jucker M (2006) Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 313:1781–1784

    CAS  PubMed  Google Scholar 

  • Moechars D, Dewachter I, Lorent K, Reverse D, Baekelandt V, Naidu A, Tesseur I, Spittaels K, Haute CV, Checler F, Godaux E, Cordell B, Van LF (1999) Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. J Biol Chem 274:6483–6492

    CAS  PubMed  Google Scholar 

  • Moretto N, Bolchi A, Rivetti C, Imbimbo BP, Villetti G, Pietrini V, Polonelli L, Del SS, Smith KM, Ferrante RJ, Ottonello S (2007) Conformation-sensitive antibodies against alzheimer amyloid-beta by immunization with a thioredoxin-constrained B-cell epitope peptide. J Biol Chem 282:11436–11445

    CAS  PubMed  Google Scholar 

  • Morgan D, Diamond DM, Gottschall PE, Ugen KE, Dickey C, Hardy J, Duff K, Jantzen P, DiCarlo G, Wilcock D, Connor K, Hatcher J, Hope C, Gordon M, Arendash GW (2000) Aβ peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature 408(6815):982–985

    CAS  PubMed  Google Scholar 

  • Morishima-Kawashima M, Hasegawa M, Takio K, Suzuki M, Yoshida H, Watanabe A, Titani K, Ihara Y (1995) Hyperphosphorylation of tau in PHF. Neurobiol Aging 16:365–371

    CAS  PubMed  Google Scholar 

  • Movsesyan N, Ghochikyan A, Mkrtichyan M, Petrushina I, Davtyan H, Olkhanud PB, Head E, Biragyn A, Cribbs DH, Agadjanyan MG (2008) Reducing AD-like pathology in 3× Tg-AD mouse model by DNA epitope vaccine—a novel immunotherapeutic strategy. PLoS ONE 3:e2124

    PubMed  Google Scholar 

  • Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G, Hu K, Kholodenko D, Johnson-Wood K, McConlogue L (2000) High-level neuronal expression of abeta 1–42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 20:4050–4058

    CAS  PubMed  Google Scholar 

  • Murakami T, Paitel E, Kawarabayashi T, Ikeda M, Chishti MA, Janus C, Matsubara E, Sasaki A, Kawarai T, Phinney AL, Harigaya Y, Horne P, Egashira N, Mishima K, Hanna A, Yang J, Iwasaki K, Takahashi M, Fujiwara M, Ishiguro K, Bergeron C, Carlson GA, Abe K, Westaway D, St George-Hyslop P, Shoji M (2006) Cortical neuronal and glial pathology in TgTauP301L transgenic mice: neuronal degeneration, memory disturbance, and phenotypic variation. Am J Pathol 169:1365–1375

    CAS  PubMed  Google Scholar 

  • Naslund J, Haroutunian V, Mohs R, Davis KL, Davies P, Greengard P, Buxbaum JD (2000) Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. JAMA 283:1571–1577

    CAS  PubMed  Google Scholar 

  • Nicoll JA, Wilkinson D, Holmes C, Steart P, Markham H, Weller RO (2005) Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med 9:448–452

    Google Scholar 

  • Nicoll JA, Barton E, Boche D, Neal JW, Ferrer I, Thompson P, Vlachouli C, Wilkinson D, Bayer A, Games D, Seubert P, Schenk D, Holmes C (2006) Abeta species removal after abeta42 immunization. J Neuropathol Exp Neurol 65:1040–1048

    CAS  PubMed  Google Scholar 

  • Nikolic WV, Bai Y, Obregon D, Hou H, Mori T, Zeng J, Ehrhart J, Shytle RD, Giunta B, Morgan D, Town T, Tan J (2007) Transcutaneous beta-amyloid immunization reduces cerebral beta-amyloid deposits without T cell infiltration and microhemorrhage. Proc Natl Acad Sci USA 104:2507–2512

    CAS  PubMed  Google Scholar 

  • Noble W, Garwood CJ, Hanger DP (2009) Minocycline as a potential therapeutic agent in neurodegenerative disorders characterised by protein misfolding. Prion 3(2):78–83

    Google Scholar 

  • Obregon D, Hou H, Bai Y, Nikolic WV, Mori T, Luo D, Zeng J, Ehrhart J, Fernandez F, Morgan D, Giunta B, Town T, Tan J (2008) CD40L disruption enhances Abeta vaccine-mediated reduction of cerebral amyloidosis while minimizing cerebral amyloid angiopathy and inflammation. Neurobiol Dis 29:336–353

    CAS  PubMed  Google Scholar 

  • Oddo S, Caccamo A, Kitazawa M, Tseng BP, LaFerla FM (2003a) Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease 6. Neurobiol Aging 24:1063–1070

    CAS  PubMed  Google Scholar 

  • Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM (2003b) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39:409–421

    CAS  PubMed  Google Scholar 

  • Oddo S, Caccamo A, Tran L, Lambert MP, Glabe CG, Klein WL, LaFerla FM (2006) Temporal profile of amyloid-beta (Abeta) oligomerization in an in vivo model of Alzheimer disease. A link between Abeta and tau pathology. J Biol Chem 281:1599–1604

    CAS  PubMed  Google Scholar 

  • Pappolla MA, Chyan YJ, Omar RA, Hsiao K, Perry G, Smith MA, Bozner P (1998) Evidence of oxidative stress and in vivo neurotoxicity of beta-amyloid in a transgenic mouse model of Alzheimer’s disease: a chronic oxidative paradigm for testing antioxidant therapies in vivo. Am J Pathol 152:871–877

    CAS  PubMed  Google Scholar 

  • Petrushina I, Ghochikyan A, Mkrtichyan M, Mamikonyan G, Movsesyan N, Ajdari R, Vasilevko V, Karapetyan A, Lees A, Agadjanyan MG, Cribbs DH (2008) Mannan-Abeta28 conjugate prevents Abeta-plaque deposition, but increases microhemorrhages in the brains of vaccinated Tg2576 (APPsw) mice. J Neuroinflamm 5:42

    Google Scholar 

  • Pfeifer LA, White LR, Ross GW, Petrovitch H, Launer LJ (2002a) Cerebral amyloid angiopathy and cognitive function: the HAAS autopsy study. Neurology 58:1629–1634

    CAS  PubMed  Google Scholar 

  • Pfeifer M, Boncristiano S, Bondolfi L, Stalder A, Deller T, Staufenbiel M, Mathews PM, Jucker M (2002b) Cerebral hemorrhage after passive anti-Aβ immunotherapy. Science 298:1379

    CAS  PubMed  Google Scholar 

  • Prelli F, Castaño EM, Glenner GG, Frangione B (1988) Differences between vascular and plaque core amyloid in Alzheimer’s disease. J Neurochem 51:648–651

    CAS  PubMed  Google Scholar 

  • Pride M, Seubert P, Grundman M, Hagen M, Eldridge J, Black RS (2008) Progress in the active immunotherapeutic approach to Alzheimer’s disease: clinical investigations into AN1792-associated meningoencephalitis. Neurodegener Dis 5:194–196

    CAS  PubMed  Google Scholar 

  • Puzzo D, Privitera L, Leznik E, Fa M, Staniszewski A, Palmeri A, Arancio O (2008) Picomolar amyloid-beta positively modulates synaptic plasticity and memory in hippocampus. J Neurosci 28:14537–14545

    CAS  PubMed  Google Scholar 

  • Racke MM, Boone LI, Hepburn DL, Parsadanian M, Bryan MT, Ness DK, Piroozi KS, Jordan WH, Brown DD, Hoffman WP, Holtzman DM, Bales KR, Gitter BD, May PC, Paul SM, DeMattos RB (2005) Exacerbation of cerebral amyloid angiopathy-associated microhemorrhages in amyloid precursor protein transgenic mice by immunotherapy is dependent on antibody recognition of deposited forms of amyoid beta. J Neurosci 25:629–636

    CAS  PubMed  Google Scholar 

  • Radde R, Bolmont T, Kaeser SA, Coomaraswamy J, Lindau D, Stoltze L, Calhoun ME, Jaggi F, Wolburg H, Gengler S, Haass C, Ghetti B, Czech C, Holscher C, Mathews PM, Jucker M (2006) Abeta42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep. 7:940–946

    CAS  PubMed  Google Scholar 

  • Rafii MS, Aisen PS (2009) Recent developments in Alzheimer’s disease therapeutics. BMC Med 7:7

    PubMed  Google Scholar 

  • Reiman EM, Caselli RJ, Yun LS, Chen KW, Bandy D, Minoshima S, Thibodeau SN, Osborne D (1996) Preclinical evidence of Alzheimer’s disease in persons homozygous for the ε4 allele for apolipoprotein E. N Engl J Med 334:752–758

    CAS  PubMed  Google Scholar 

  • Reiman EM, Chen K, Alexander GE, Caselli RJ, Bandy D, Osborne D, Saunders AM, Hardy J (2004) Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer’s dementia. Proc Natl Acad Sci USA 101:284–289

    CAS  PubMed  Google Scholar 

  • Reiman EM, Chen K, Liu X, Bandy D, Yu M, Lee W, Ayutyanont N, Keppler J, Reeder SA, Langbaum JB, Alexander GE, Klunk WE, Mathis CA, Price JC, Aizenstein HJ, DeKosky ST, Caselli RJ (2009) Fibrillar amyloid-beta burden in cognitively normal people at 3 levels of genetic risk for Alzheimer’s disease. Proc Natl Acad Sci USA 106:6820–6825

    CAS  PubMed  Google Scholar 

  • Ren PH, Lauckner JE, Kachirskaia I, Heuser JE, Melki R, Kopito RR (2009) Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates. Nat Cell Biol 11:219–225

    CAS  PubMed  Google Scholar 

  • Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T, Gerstein H, Yu GQ, Mucke L (2007) Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science 316:750–754

    CAS  PubMed  Google Scholar 

  • Rockenstein E, Mallory M, Mante M, Sisk A, Masliaha E (2001) Early formation of mature amyloid-beta protein deposits in a mutant APP transgenic model depends on levels of Abeta(1–42). J Neurosci Res 66:573–582

    CAS  PubMed  Google Scholar 

  • Sadowski M, Wisniewski T (2007) Disease modifying approaches for Alzheimer’s pathology. Curr Pharm Des 13:1943–1954

    CAS  PubMed  Google Scholar 

  • Sadowski M, Pankiewicz J, Scholtzova H, Mehta P, Prelli F, Quartermain D, Wisniewski T (2006) Blocking the apolipoproteinE/Amyloid β interaction reduces the parenchymal and vascular amyloid-β deposition and prevents memory deficit in AD transgenic mice. Proc Natl Acad Sci USA 103:18787–18792

    CAS  PubMed  Google Scholar 

  • Sadowski M, Verma A, Wisniewski T (2008) Infectious disease of the nervous system: prion diseases. In: Bradley WG, Daroff RB, Fenichel GM, Jankovic J (eds) Neurology in clinical practice. Elsevier, Philadelphia, pp 1567–1581

    Google Scholar 

  • Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Liao Z, Lieberburg I, Motter R, Mutter L, Soriano F, Shopp G, Vasquez N, Vandevert C, Walker S, Wogulis M, Yednock T, Games D, Seubert P (1999) Immunization with amyloid-β attenuates Alzheimer disease-like pathology in the PDAPP mice. Nature 400:173–177

    CAS  PubMed  Google Scholar 

  • Schiltz JG, Salzer U, Mohajeri MH, Franke D, Heinrich J, Pavlovic J, Wollmer MA, Nitsch RM, Moelling K (2004) Antibodies from a DNA peptide vaccination decrease the brain amyloid burden in a mouse model of Alzheimer’s disease. J Mol Med 82:706–714

    PubMed  Google Scholar 

  • Schindowski K, Bretteville A, Leroy K, Begard S, Brion JP, Hamdane M, Buee L (2006) Alzheimer’s disease-like tau neuropathology leads to memory deficits and loss of functional synapses in a novel mutated tau transgenic mouse without any motor deficits. Am J Pathol 169:599–616

    CAS  PubMed  Google Scholar 

  • Scholtzova H, Kascsak RJ, Bates KA, Boutajangout A, Kerr DJ, Meeker HC, Mehta PD, Spinner DS, Wisniewski T (2009) Induction of Toll-like receptor 9 signaling as a method for ameliorating Alzheimer’s disease related pathology. J Neurosci 29:1846–1854

    CAS  PubMed  Google Scholar 

  • Seabrook TJ, Thomas K, Jiang L, Bloom J, Spooner E, Maier M, Bitan G, Lemere CA (2006) Dendrimeric Abeta1-15 is an effective immunogen in wild-type and APP-tg mice. Neurobiol Aging 28(6):813–823

    PubMed  Google Scholar 

  • Sergeant N, David JP, Lefranc D, Vermersch P, Wattez A, Delacourte A (1997) Different distribution of phosphorylated tau protein isoforms in Alzheimer’s and Pick’s diseases. FEBS Lett. 412:578–582

    CAS  PubMed  Google Scholar 

  • Sergeant N, Bretteville A, Hamdane M, Caillet-Boudin ML, Grognet P, Bombois S, Blum D, Delacourte A, Pasquier F, Vanmechelen E, Schraen-Maschke S, Buee L (2008) Biochemistry of Tau in Alzheimer’s disease and related neurological disorders. Expert. Rev. Proteomics. 5:207–224

    CAS  PubMed  Google Scholar 

  • Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, Regan CM, Walsh DM, Sabatini BL, Selkoe DJ (2008) Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14(8):837–842

    CAS  PubMed  Google Scholar 

  • Shioi J, Georgakopoulos A, Mehta P, Kouchi Z, Litterst CM, Baki L, Robakis NK (2007) FAD mutants unable to increase neurotoxic Abeta 42 suggest that mutation effects on neurodegeneration may be independent of effects on Abeta. J Neurochem 101:674–681

    CAS  PubMed  Google Scholar 

  • Sigurdsson EM (2008) Immunotherapy targeting pathological tau protein in Alzheimer’s disease and related tauopathies. J Alzheimers Dis 15:157–168

    CAS  PubMed  Google Scholar 

  • Sigurdsson EM (2009) Tau-focused immunotherapy for Alzheimer’s disease and related tauopathies. Curr Alzheimer Res 6(5):446–450

    Google Scholar 

  • Sigurdsson EM, Scholtzova H, Mehta P, Frangione B, Wisniewski T (2001) Immunization with a nontoxic/nonfibrillar amyloid-β homologous peptide reduces Alzheimer’s disease-associated pathology in transgenic mice. Am J Pathol 159(2):439–447

    CAS  PubMed  Google Scholar 

  • Sigurdsson EM, Frangione B, Wisniewski T (2002) Immunization for Alzheimer’s disease. Drug Dev Res 56:135–142

    CAS  Google Scholar 

  • Sigurdsson EM, Knudsen EL, Asuni A, Sage D, Goni F, Quartermain D, Frangione B, Wisniewski T (2004) An attenuated immune response is sufficient to enhance cognition in an Alzheimer’s disease mouse model immunized with amyloid-β derivatives. J Neurosci 24:6277–6282

    CAS  PubMed  Google Scholar 

  • Small SA, Duff K (2008) Linking Abeta and tau in late-onset Alzheimer’s disease: a dual pathway hypothesis. Neuron 60:534–542

    CAS  PubMed  Google Scholar 

  • Smith MA, Hirai K, Hsiao K, Pappolla M, Harris PL, Siedlak SL, Tabaton M, Perry G (1998) Amyloid beta deposition in Alzheimer transgenic mice is associated with oxidative stress. J Neurochem 70:2212–2215

    Article  CAS  PubMed  Google Scholar 

  • Solomon B (2007) Antibody-mediated immunotherapy for Alzheimer’s disease. Curr Opin Investig Drugs 8:519–524

    CAS  PubMed  Google Scholar 

  • Solomon B, Koppel R, Frankel D, Hanan-Aharon E (1997) Disaggregation of Alzheimer β-amyloid by site-directed mAb. Proc Natl Acad Sci USA 94:4109–4112

    CAS  PubMed  Google Scholar 

  • Spires TL, Meyer-Luehmann M, Stern EA, McLean PJ, Skoch J, Nguyen PT, Bacskai BJ, Hyman BT (2005) Dendritic spine abnormalities in amyloid precursor protein transgenic mice demonstrated by gene transfer and intravital multiphoton microscopy 7. J Neurosci 25:7278–7287

    CAS  PubMed  Google Scholar 

  • Sturchler-Pierrat C, Abramowski D, Duke M, Wiederhold KH, Mistl C, Rothacher S, Ledermann B, Bürki K, Frey P, Paganetti PA, Waridel C, Calhoun ME, Jucker M, Probst A, Staufenbiel M, Sommer B (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci USA 94:13287–13292

    CAS  PubMed  Google Scholar 

  • Tagliavini F, Prelli F, Ghiso J, Bugiani O, Serban D, Prusiner SB, Farlow MR, Ghetti B, Frangione B (1991) Amyloid protein of Gerstmann-Straussler-Scheinker disease (Indiana kindred) is an 11 kd fragment of prion protein with an N- terminal glycine at codon 58. EMBO J 10:513–519

    CAS  PubMed  Google Scholar 

  • Tahara K, Kim HD, Jin JJ, Maxwell JA, Li L, Fukuchi K (2006) Role of toll-like receptor signalling in Abeta uptake and clearance. Brain 129:3006–3019

    PubMed  Google Scholar 

  • Takeuchi A, Irizarry MC, Duff K, Saido T, Hsiao Ashe K, Hasegawa H, Mann DM, Hyman BT, Iwatsubo T (2000) Age-related amyloid β deposition in transgenic mice overexpressing both Alzheimer mutant presenilin 1 and amyloid β precursor protein swedish mutant is not associated with global neuronal loss. Am J Pathol 157:331–339

    CAS  PubMed  Google Scholar 

  • Tampellini D, Magrane J, Takahashi RH, Li F, Lin MT, Almeida CG, Gouras GK (2007) Internalized antibodies to the Abeta domain of APP reduce neuronal Abeta and protect against synaptic alterations. J Biol Chem 282:18895–18906

    CAS  PubMed  Google Scholar 

  • Tan J, Town T, Paris D, Mori T, Suo Z, Crawford F, Mattson MP, Flavell RA, Mullan M (1999) Microglial activation resulting from CD40–CD40L interaction after beta-amyloid stimulation. Science 286:2352–2355

    CAS  PubMed  Google Scholar 

  • Tanemura K, Akagi T, Murayama M, Kikuchi N, Murayama O, Hashikawa T, Yoshiike Y, Park JM, Matsuda K, Nakao S, Sun X, Sato S, Yamaguchi H, Takashima A (2001) Formation of filamentous tau aggregations in transgenic mice expressing V337M human tau. Neurobiol Dis 8:1036–1045

    CAS  PubMed  Google Scholar 

  • Taniguchi T, Doe N, Matsuyama S, Kitamura Y, Mori H, Saito N, Tanaka C (2005) Transgenic mice expressing mutant (N279 K) human tau show mutation dependent cognitive deficits without neurofibrillary tangle formation. FEBS Lett. 579:5704–5712

    CAS  PubMed  Google Scholar 

  • Tanzi RE, Bertram L (2005) Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell 120:545–555

    CAS  PubMed  Google Scholar 

  • Town T, Laouar Y, Pittenger C, Mori T, Szekely CA, Tan J, Duman RS, Flavell RA (2008) Blocking TGF-beta-Smad2/3 innate immune signaling mitigates Alzheimer-like pathology. Nat Med 14:681–687

    CAS  PubMed  Google Scholar 

  • Tsai J, Grutzendler J, Duff K, Gan WB (2004) Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nat Neurosci 7:1181–1183

    CAS  PubMed  Google Scholar 

  • Utton MA, Noble WJ, Hill JE, Anderton BH, Hanger DP (2005) Molecular motors implicated in the axonal transport of tau and alpha-synuclein. J Cell Sci 118:4645–4654

    CAS  PubMed  Google Scholar 

  • Vermeer SE, Den Heijer T, Koudstaal PJ, Oudkerk M, Hofman A, Breteler MM (2003) Incidence and risk factors of silent brain infarcts in the population-based Rotterdam Scan Study. Stroke 34:392–396

    Google Scholar 

  • Vidal R, Frangione B, Rostagno A, Mead S, Revesz T, Plant G, Ghiso J (1999) A stop-codon mutation in the BRI gene associated with familial British dementia. Nature 399:776–781

    CAS  PubMed  Google Scholar 

  • Vidal R, Revesz T, Rostagno A, Kim E, Holton JL, Bek T, Bojsen-Moller M, Braendgaard H, Plant G, Ghiso J, Frangione B (2000) A decamer duplication in the 3’ region of the BRI gene originates an amyloid peptide that is associated with dementia in a Danish kindred. Proc Natl Acad Sci USA 97:4920–4925

    CAS  PubMed  Google Scholar 

  • Wang JZ, Liu F (2008) Microtubule-associated protein tau in development, degeneration and protection of neurons. Prog Neurobiol 85:148–175

    CAS  PubMed  Google Scholar 

  • Weiner HL, Lemere CA, Maron R, Spooner ET, Grenfell TJ, Mori C, Issazadeh S, Hancock WW, Selkoe D (2000) Nasal administration of amyloid-β peptide decreases cerebral amyloid burden in a mouse model of Alzheimer’s disease. Ann Neurol 48:567–579

    CAS  PubMed  Google Scholar 

  • Wilcock DM, Rojiani A, Rosenthal A, Subbarao S, Freeman MJ, Gordon MN, Morgan D (2004) Passive immunization against Abeta in aged APP-transgenic mice reverses cognitive deficits and depletes parenchymal amyloid deposits in spite of increased vascular amyloid and microhemorrhage. J. Neuroinflammation 1:24

    PubMed  Google Scholar 

  • Wilcock DM, Jantzen PT, Li Q, Morgan D, Gordon MN (2007) Amyloid-beta vaccination, but not nitro-nonsteroidal anti-inflammatory drug treatment, increases vascular amyloid and microhemorrhage while both reduce parenchymal amyloid. Neuroscience 144:950–960

    CAS  PubMed  Google Scholar 

  • Wilcock DM, Gharkholonarehe N, van Nostrand WE, Davis J, Vitek MP, Colton CA (2009a) Amyloid reduction by amyloid-beta vaccination also reduces mouse tau pathology and protects from neuron loss in two mouse models of Alzheimer’s disease. J Neurosci 29:7957–7965

    CAS  PubMed  Google Scholar 

  • Wilcock DM, Vitek MP, Colton CA (2009b) Vascular amyloid alters astrocytic water and potassium channels in mouse models and humans with Alzheimer’s disease. Neuroscience 159:1055–1069

    CAS  PubMed  Google Scholar 

  • Wilhelmus MM, de Waal RM, Verbeek MM (2007) Heat shock proteins and amateur chaperones in amyloid-Beta accumulation and clearance in Alzheimer’s disease. Mol Neurobiol 35:203–216

    CAS  PubMed  Google Scholar 

  • Wisniewski T (2005) Practice point commentary on “Clinical effects of Aβ immunization (AN1792) in patients with AD in an interupted trial”. Nat Clin Pract Neurol 1:84–85

    Google Scholar 

  • Wisniewski T, Boutajangout A (2009) Vaccination as a therapeutic approach for Alzheimer’s disease. Mount Sinai J Med (in press)

  • Wisniewski T, Frangione B (1992) Apolipoprotein E: a pathological chaperone protein in patients with cerebral and systemic amyloid. Neurosci Lett 135:235–238

    CAS  PubMed  Google Scholar 

  • Wisniewski T, Frangione B (2005) Immunological and anti-chaperone therapeutic approaches for Alzheimer’s disease. Brain Pathol 15:72–77

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski T, Konietzko U (2008) Amyloid-β immunization for Alzheimer’s disease. Lancet Neurol 7:805–811

    CAS  PubMed  Google Scholar 

  • Wisniewski T, Sadowski M (2008) Preventing Aβ fibrillization and deposition: β-sheet breakers and pathological chaperone inhibitors. BMC Neurosci 9:1–5

    Google Scholar 

  • Wisniewski T, Sigurdsson EM (2007) Therapeutic approaches for prion and Alzheimer’s diseases. FEBS J 274:3784–3798

    CAS  PubMed  Google Scholar 

  • Wisniewski T, Golabek AA, Matsubara E, Ghiso J, Frangione B (1993) Apolipoprotein E: binding to soluble Alzheimer’s beta-amyloid. Biochem Biophys Res Commun 192:359–365

    CAS  PubMed  Google Scholar 

  • Wisniewski T, Ghiso J, Frangione B (1994) Alzheimer’s disease and soluble Aβ. Neurobiol Aging 15:143–152

    CAS  PubMed  Google Scholar 

  • Wisniewski T, Golabek AA, Kida E, Wisniewski KE, Frangione B (1995) Conformational mimicry in Alzheimer’s disease. Role of apolipoproteins in amyloidogenesis. Am J Pathol 147:238–244

    CAS  PubMed  Google Scholar 

  • Wisniewski T, Prelli F, Scholtzova H, Chung E, Mehta PD, Kascsak R, Kascsak R, Goni F (2009) Immunotherapy targeting abnormal protein conformation. Alz. Dementia 4:113

    Google Scholar 

  • Wolfe MS (2009) Gamma-Secretase in biology and medicine. Semin. Cell Dev. Biol. 20:219–224

    CAS  PubMed  Google Scholar 

  • Xu F, Grande AM, Robinson JK, Previti ML, Vasek M, Davis J, van Nostrand WE (2007) Early-onset subicular microvascular amyloid and neuroinflammation correlate with behavioral deficits in vasculotropic mutant amyloid beta-protein precursor transgenic mice. Neuroscience 146:98–107

    CAS  PubMed  Google Scholar 

  • Yoshiyama Y, Higuchi M, Zhang B, Huang SM, Iwata N, Saido TC, Maeda J, Suhara T, Trojanowski JQ, Lee VM (2007) Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53:337–351

    CAS  PubMed  Google Scholar 

  • Zamora E, Handisurya A, Shafti-Keramat S, Borchelt D, Rudow G, Conant K, Cox C, Troncoso JC, Kirnbauer R (2006) Papillomavirus-like particles are an effective platform for amyloid-beta immunization in rabbits and transgenic mice. J Immunol 177:2662–2670

    CAS  PubMed  Google Scholar 

  • Zhang-Nunes SX, Maat-Schieman ML, Van Duinen SG, Roos RA, Frosch MP, Greenberg SM (2006) The cerebral beta-amyloid angiopathies: hereditary and sporadic. Brain Pathol 16:30–39

    CAS  PubMed  Google Scholar 

  • Zilka N, Korenova M, Novak M (2009) Misfolded tau protein and disease modifying pathways in transgenic rodent models of human tauopathies. Acta Neuropathol 118:71–86

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This manuscript was supported by NIH grants AG20245 and AG15408.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Wisniewski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wisniewski, T., Boutajangout, A. Immunotherapeutic approaches for Alzheimer’s disease in transgenic mouse models. Brain Struct Funct 214, 201–218 (2010). https://doi.org/10.1007/s00429-009-0236-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-009-0236-2

Keywords

Navigation