Skip to main content
Log in

Cell proliferation in the striatum during postnatal development: preferential distribution in subregions of the ventral striatum

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Cortico-ventral basal ganglia circuitry is associated with a variety of mental health disorders including obsessive–compulsive disorder and drug addiction, disorders that emerge during childhood through young adulthood, a period in which the cortex and striatum continue to development. Moreover, cell proliferation, which is associated with development and plasticity, also continues in the cortex and striatum through adulthood. Given the implication of cortico-basal ganglia circuitry in diseases emerging during postnatal development, we studied cell proliferation at different ages in striatal regions associated with specific frontal cortical areas. The results show cell proliferation throughout the striatum at all postnatal ages. The majority of the new cells were immunoreactive for NG2 chondroitin sulfate, a marker for specific progenitor cells, but not for NeuN, a neuronal marker. Although neurogenesis was not observed, approximately 30% of the new cells appeared to be paired with a neuron. There was a significantly higher degree of cell proliferation during the first postnatal year compared to other striatal regions. Finally, throughout the juvenile years, the ventral striatal areas receiving input from the ventral, medial prefrontal cortex and orbital prefrontal cortex have significantly more new cells compared to other striatal regions. Integrity of the ventral striatum is critical for the development of goal-directed behaviors. The high number of new cells in the ventral striatum during postnatal development may be particularly important for the refinement of the cortico-striatal network, and in the formation of neural ensembles fundamental to learning during behavioral development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bayer SA (1985) Neurogenesis in the olfactory tubercle and islands of calleja in the rat. Int J Dev Neurosci 3:135–147

    Article  Google Scholar 

  • Bedard A, Gravel C, Parent A (2006) Chemical characterization of newly generated neurons in the striatum of adult primates. Exp Brain Res 170:501–512

    Article  PubMed  CAS  Google Scholar 

  • Bedard A, Cossette M, Levesque M, Parent A (2002) Proliferating cells can differentiate into neurons in the striatum of normal adult monkey. Neurosci Lett 328:213–216

    Article  PubMed  CAS  Google Scholar 

  • Berendse HW, Galisde Graaf Y, Groenewegen HJ (1992) Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat. J Comp Neurol 316:314–347

    Article  PubMed  CAS  Google Scholar 

  • Bergles DE, Roberts JD, Somogyi P, Jahr CE (2000) Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405:187–191

    Article  PubMed  CAS  Google Scholar 

  • Bourgeois J-P, Goldman-Rakic PS, Rakic P (1994) Synaptogenesis in the prefrontal cortex of rhesus monkeys. Cereb Cortex 4:78–96

    Article  PubMed  CAS  Google Scholar 

  • Calabresi P, Centonze D, Gubellini P, Marfia GA, Pisani A, Sancesario G, Bernardi G (2000) Synaptic transmission in the striatum: from plasticity to neurodegeneration. Prog Neurobiol 61:231–265

    Article  PubMed  CAS  Google Scholar 

  • Calzavara R, Mailly P, Haber SN (2007) Relationship between the corticostriatal terminals from areas 9 and 46, and those from area 8A, dorsal and rostral premotor cortex and area 24c: an anatomical substrate for cognition to action. Eur J Neurosci 26:2005–2024

    Article  PubMed  Google Scholar 

  • Dayer AG, Cleaver KM, Abouantoun T, Cameron HA (2005) New GABAergic interneurons in the adult neocortex and striatum are generated from different precursors. J Cell Biol 168:415–427

    Article  PubMed  CAS  Google Scholar 

  • De Marchis S, Fasolo A, Puche AC (2004) Subventricular zone-derived neuronal progenitors migrate into the subcortical forebrain of postnatal mice. J Comp Neurol 476:290–300

    Article  PubMed  Google Scholar 

  • DiFiglia M, Pasik P, Pasik T (1980) Early postnatal development of the monkey neostriatum: a Golgi and ultrastructural study. J Comp Neurol 190:303–331

    Article  PubMed  CAS  Google Scholar 

  • Drevets WC, Gautier C, Price JC, Kupfer DJ, Kinahan PE, Grace AA, Price JL, Mathis CA (2001) Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria. Biol Psychiatry 49:81–96

    Article  PubMed  CAS  Google Scholar 

  • Elliott R, Newman JL, Longe OA, Deakin JF (2003) Differential response patterns in the striatum and orbitofrontal cortex to financial reward in humans: a parametric functional magnetic resonance imaging study. J Neurosci 23:303–307

    PubMed  CAS  Google Scholar 

  • Evans AH, Pavese N, Lawrence AD, Tai YF, Appel S, Doder M, Brooks DJ, Lees AJ, Piccini P (2006) Compulsive drug use linked to sensitized ventral striatal dopamine transmission. Ann Neurol 59:852–858

    Article  PubMed  CAS  Google Scholar 

  • Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8:1481–1489

    Article  PubMed  CAS  Google Scholar 

  • Ge WP, Yang XJ, Zhang Z, Wang HK, Shen W, Deng QD, Duan S (2006) Long-term potentiation of neuron-glia synapses mediated by Ca2+-permeable AMPA receptors. Science 312:1533–1537

    Article  PubMed  CAS  Google Scholar 

  • Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC, Nugent TF 3rd, Herman DH, Clasen LS, Toga AW, Rapoport JL, Thompson PM (2004) Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci USA 101:8174–8179

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS, Brown RM (1982) Postnatal development of monoamine content and synthesis in the cerebral cortex of rhesus monkeys. Dev Brain Res 4:339–349

    Article  CAS  Google Scholar 

  • Haber SN, McFarland NR (1999) The concept of the ventral striatum in nonhuman primates. In: McGinty JF (ed) Advancing from the ventral striatum to the extended amygdala. The New York Academy of Sciences, New York, pp 33–48

    Google Scholar 

  • Haber SN, Kim KS, Mailly P, Calzavara R (2006) Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical inputs, providing a substrate for incentive-based learning. J Neurosci 26:8368–8376

    Article  PubMed  CAS  Google Scholar 

  • Hariri AR, Brown SM, Williamson DE, Flory JD, de Wit H, Manuck SB (2006) Preference for immediate over delayed rewards is associated with magnitude of ventral striatal activity. J Neurosci 26:13213–13217

    Article  PubMed  CAS  Google Scholar 

  • Heimer L (1978) The olfactory cortex and the ventral striatum. In: Livingston KE, Hornykiewicz O (eds) Limbic mechanisms. Plenum Press, New York, pp 95–187

    Google Scholar 

  • Heimer L (2000) Basal forebrain in the context of schizophrenia. Brain Res Brain Res Rev 31:205–235

    Article  PubMed  CAS  Google Scholar 

  • Institute of Laboratory Animal Resources CoLS, National Research Council (1996) Guide for the care and use of laboratory animals. National Academy Press, Washington

    Google Scholar 

  • Kalivas PW, Volkow ND (2005) The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry 162:1403–1413

    Article  PubMed  Google Scholar 

  • Kelley AE, Bakshi VP, Haber SN, Steininger TL, Will MJ, Zhang M (2002) Opioid modulation of taste hedonics within the ventral striatum. Physiol Behav 76:365–377

    Article  PubMed  CAS  Google Scholar 

  • Kornack DR, Rakic P (2001) The generation, migration, and differentiation of olfactory neurons in the adult primate brain. Proc Natl Acad Sci USA 98:4752–4757

    Article  PubMed  CAS  Google Scholar 

  • Lenroot RK, Giedd JN (2006) Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neurosci Biobehav Rev 30:718–729

    Article  PubMed  Google Scholar 

  • Lin SC, Bergles DE (2004) Synaptic signaling between GABAergic interneurons and oligodendrocyte precursor cells in the hippocampus. Nat Neurosci 7:24–32

    Article  PubMed  CAS  Google Scholar 

  • Luzzati F, De Marchis S, Fasolo A, Peretto P (2006) Neurogenesis in the caudate nucleus of the adult rabbit. J Neurosci 26:609–621

    Article  PubMed  CAS  Google Scholar 

  • Machado CJ, Bachevalier J (2003) Non-human primate models of childhood psychopathology: the promise and the limitations. J Child Psychol Psychiatry 44:64–87

    Article  PubMed  Google Scholar 

  • Malkova L, Heuer E, Saunders RC (2006) Longitudinal magnetic resonance imaging study of rhesus monkey brain development. Eur J Neurosci 24:3204–3212

    Article  PubMed  CAS  Google Scholar 

  • Meyer G, Gonzalez-Hernandez T, Carrillo-Padilla F, Ferres-Torres R (1989) Aggregations of granule cells in the basal forebrain (islands of Calleja): Golgi and cytoarchitectonic study in different mammals, including man. J Comp Neurol 284:405–428

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama A (2001) NG2 cells in the brain: a novel glial cell population. Hum Cell 14:77–82

    PubMed  CAS  Google Scholar 

  • Padoa-Schioppa C, Assad JA (2006) Neurons in the orbitofrontal cortex encode economic value. Nature 441:223–226

    Article  PubMed  CAS  Google Scholar 

  • Pagnoni G, Zink CF, Montague PR, Berns GS (2002) Activity in human ventral striatum locked to errors of reward prediction. Nat Neurosci 5:97–98

    Article  PubMed  CAS  Google Scholar 

  • Paukert M, Bergles DE (2006) Synaptic communication between neurons and NG2+ cells. Curr Opin Neurobiol 16:515–521

    Article  PubMed  CAS  Google Scholar 

  • Pencea V, Bingaman KD, Freedman LJ, Luskin MB (2001) Neurogenesis in the subventricular zone and rostral migratory stream of the neonatal and adult primate forebrain. Exp Neurol 172:1–16

    Article  PubMed  CAS  Google Scholar 

  • Roesch MR, Olson CR (2004) Neuronal activity related to reward value and motivation in primate frontal cortex. Science 304:307–310

    Article  PubMed  CAS  Google Scholar 

  • Rolls ET (2000) The orbitofrontal cortex and reward. Cereb Cortex 10:284–294

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg DR, Lewis DA (1995) Postnatal maturation of the dopaminergic innervation of monkey prefrontal and motor cortices: a tyrosine hydroxylase immunohistochemical analysis. J Comp Neurol 358:383–400

    Article  PubMed  CAS  Google Scholar 

  • Schultz W, Tremblay L, Hollerman JR (2003) Changes in behavior-related neuronal activity in the striatum during learning. Trends Neurosci 26:321–328

    Article  PubMed  CAS  Google Scholar 

  • Sowell ER, Thompson PM, Leonard CM, Welcome SE, Kan E, Toga AW (2004) Longitudinal mapping of cortical thickness and brain growth in normal children. J Neurosci 24:8223–8231

    Article  PubMed  CAS  Google Scholar 

  • Tamura Y, Kataoka Y, Cui Y, Takamori Y, Watanabe Y, Yamada H (2007) Multi-directional differentiation of doublecortin- and NG2-immunopositive progenitor cells in the adult rat neocortex in vivo. Eur J Neurosci 25:3489–3498

    Article  PubMed  Google Scholar 

  • Tande D, Hoglinger G, Debeir T, Freundlieb N, Hirsch EC, Francois C (2006) New striatal dopamine neurons in MPTP-treated macaques result from a phenotypic shift and not neurogenesis. Brain 129:1194–1200

    Article  PubMed  Google Scholar 

  • Thomas MJ, Malenka RC (1999) NMDA receptor-dependent long-term depression in the nucleus accumbens. Soc Neurosci (Abstract)

  • Tonchev AB, Yamashima T, Sawamoto K, Okano H (2005) Enhanced proliferation of progenitor cells in the subventricular zone and limited neuronal production in the striatum and neocortex of adult macaque monkeys after global cerebral ischemia. J Neurosci Res 81:776–788

    Article  PubMed  CAS  Google Scholar 

  • Van Kampen JM, Hagg T, Robertson HA (2004) Induction of neurogenesis in the adult rat subventricular zone and neostriatum following dopamine D receptor stimulation. Eur J Neurosci 19:2377–2387

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank April Whitbeck, for the excellent technical support and Dr. Joel Levine for providing NG2 antisera. This work was supported by NIH grant MH45573.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne N. Haber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stopczynski, R.E., Poloskey, S.L. & Haber, S.N. Cell proliferation in the striatum during postnatal development: preferential distribution in subregions of the ventral striatum. Brain Struct Funct 213, 119–127 (2008). https://doi.org/10.1007/s00429-008-0185-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-008-0185-1

Keywords

Navigation