Skip to main content

Advertisement

Log in

A newly characterized human well-differentiated liposarcoma cell line contains amplifications of the 12q12-21 and 10p11-14 regions

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

While surgery is the usual treatment for localized well-differentiated and dedifferentiated liposarcomas (WDLPS/DDLPS), the therapeutic options for patients with advanced disease are limited. The classical antimitotic treatments are most often inefficient. The establishment of genetically characterized cell lines is therefore crucial for providing in vitro models for novel targeted therapies. We have used spectral karyotyping, fluorescence in situ hybridization with whole chromosome painting and locus-specific probes, and array-comparative genomic hybridization to identify the chromosomal and molecular alterations of a novel cell line established from a recurring sclerosing WDLPS. The karyotype was hypertriploid and showed multiple structural anomalies. All cells retained the presence of a giant marker chromosome that had been previously identified in the primary cell cultures. This giant chromosome contained high-level amplification of chromosomal regions 12q13-21 and lacked the alpha-satellite centromeric sequences associated with WDLPS/DDLPS. The 12q amplicon was large, containing 370 amplified genes. The DNA copy number ranged from 3 to 57. The highest levels of amplification were observed at 12q14.3 for GNS, WIF1, and HMGA2. We analyzed the mRNA expression status by real-time reverse transcription polymerase chain reaction for six genes from this amplicon: MDM2, HMGA2, CDK4, TSPAN31, WIF1, and YEATS4. mRNA overexpression was correlated with genomic amplification. A second amplicon originating from 10p11-14 was also present in the giant marker chromosome. The 10p amplicon contained 62 genes, including oncogenes such as MLLT10, previously described in chimeric fusion with MLL in leukemias, NEBL, and BMI1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fletcher C, Unni K, Mertens F (2002) World Health Organization classification of tumours pathology and genetics of tumours of soft tissue and bone. Lyon

  2. Pedeutour F, Maire G, Sirvent N (2004) From cytogenetics to cytogenomics of adipose tissue tumors: 2. Malignant adipose tissue tumors. Bull Cancer 91(4):317–323

    PubMed  CAS  Google Scholar 

  3. Enzinger, Weiss SW, Goldblum JR (2008) Liposarcoma. In: Elsevier M (ed) Soft tissue tumors (5th ed). St. Louis, pp. 477–516

  4. Coindre JM, Pedeutour F, Aurias A (2009) Well-differentiated and dedifferentiated liposarcomas. Virchows Arch 456(2):167–179

    Article  PubMed  Google Scholar 

  5. Pedeutour F, Forus A, Coindre JM, Berner JM, Nicolo G, Michiels JF, Terrier P, Ranchere-Vince D, Collin F, Myklebost O, Turc-Carel C (1999) Structure of the supernumerary ring and giant rod chromosomes in adipose tissue tumors. Genes Chromosomes Cancer 24(1):30–41

    Article  PubMed  CAS  Google Scholar 

  6. Italiano A, Bianchini L, Keslair F, Bonnafous S, Cardot-Leccia N, Coindre JM, Dumollard JM, Hofman P, Leroux A, Mainguene C, Peyrottes I, Ranchere-Vince D, Terrier P, Tran A, Gual P, Pedeutour F (2008) HMGA2 is the partner of MDM2 in well-differentiated and dedifferentiated liposarcomas whereas CDK4 belongs to a distinct inconsistent amplicon. Int J Cancer 122(10):2233–2241

    Article  PubMed  CAS  Google Scholar 

  7. Italiano A, Bianchini L, Gjernes E, Keslair F, Ranchere-Vince D, Dumollard JM, Haudebourg J, Leroux A, Mainguene C, Terrier P, Chibon F, Coindre JM, Pedeutour F (2009) Clinical and biological significance of CDK4 amplification in well-differentiated and dedifferentiated liposarcomas. Clin Cancer Res 15(18):5696–5703

    Article  PubMed  CAS  Google Scholar 

  8. Barretina J, Taylor BS, Banerji S, Ramos AH, Lagos-Quintana M, Decarolis PL, Shah K, Socci ND, Weir BA, Ho A, Chiang DY, Reva B, Mermel CH, Getz G, Antipin Y, Beroukhim R, Major JE, Hatton C, Nicoletti R, Hanna M, Sharpe T, Fennell TJ, Cibulskis K, Onofrio RC, Saito T, Shukla N, Lau C, Nelander S, Silver SJ, Sougnez C, Viale A, Winckler W, Maki RG, Garraway LA, Lash A, Greulich H, Root DE, Sellers WR, Schwartz GK, Antonescu CR, Lander ES, Varmus HE, Ladanyi M, Sander C, Meyerson M, Singer S (2010) Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Nat Genet 42(8):715–721

    Article  PubMed  CAS  Google Scholar 

  9. Erickson-Johnson MR, Seys AR, Roth CW, King AA, Hulshizer RL, Wang X, Asmann YW, Lloyd RV, Jacob EK, Oliveira AM (2009) Carboxypeptidase M: a biomarker for the discrimination of well-differentiated liposarcoma from lipoma. Mod Pathol 22(12):1541–1547

    Article  PubMed  CAS  Google Scholar 

  10. Wang X, Asmann YW, Erickson-Johnson MR, Oliveira JL, Zhang H, Moura RD, Lazar AJ, Lev D, Bill K, Lloyd RV, Yaszemski MJ, Maran A, Oliveira AM (2011) High-resolution genomic mapping reveals consistent amplification of the fibroblast growth factor receptor substrate 2 gene in well-differentiated and dedifferentiated liposarcoma. Genes Chromosomes Cancer 50(11):849–858

    Article  PubMed  CAS  Google Scholar 

  11. Scheinin I, Myllykangas S, Borze I, Bohling T, Knuutila S, Saharinen J (2008) CanGEM: mining gene copy number changes in cancer. Nucleic Acids Res 36:D830–D835, Database issue

    Article  PubMed  CAS  Google Scholar 

  12. Baudis M (2007) Genomic imbalances in 5918 malignant epithelial tumors: an explorative meta-analysis of chromosomal CGH data. BMC Cancer 7:226

    Article  PubMed  Google Scholar 

  13. Pedeutour F, Suijkerbuijk RF, Forus A, Van Gaal J, Van de Klundert W, Coindre JM, Nicolo G, Collin F, Van Haelst U, Huffermann K et al (1994) Complex composition and co-amplification of SAS and MDM2 in ring and giant rod marker chromosomes in well-differentiated liposarcoma. Genes Chromosomes Cancer 10(2):85–94

    Article  PubMed  CAS  Google Scholar 

  14. Gisselsson D, Hoglund M, Mertens F, Mitelman F, Mandahl N (1998) Chromosomal organization of amplified chromosome 12 sequences in mesenchymal tumors detected by fluorescence in situ hybridization. Genes Chromosomes Cancer 23(3):203–212

    Article  PubMed  CAS  Google Scholar 

  15. Sirvent N, Forus A, Lescaut W, Burel F, Benzaken S, Chazal M, Bourgeon A, Vermeesch JR, Myklebost O, Turc-Carel C, Ayraud N, Coindre JM, Pedeutour F (2000) Characterization of centromere alterations in liposarcomas. Genes Chromosomes Cancer 29(2):117–129

    Article  PubMed  CAS  Google Scholar 

  16. Dei Tos AP, Doglioni C, Piccinin S, Sciot R, Furlanetto A, Boiocchi M, Dal Cin P, Maestro R, Fletcher CD, Tallini G (2000) Coordinated expression and amplification of the MDM2, CDK4, and HMGI-C genes in atypical lipomatous tumours. J Pathol 190(5):531–536

    Article  PubMed  CAS  Google Scholar 

  17. Chibon F, Mariani O, Derre J, Malinge S, Coindre JM, Guillou L, Lagace R, Aurias A (2002) A subgroup of malignant fibrous histiocytomas is associated with genetic changes similar to those of well-differentiated liposarcomas. Cancer Genet Cytogenet 139(1):24–29

    Article  PubMed  CAS  Google Scholar 

  18. Micci F, Teixeira MR, Bjerkehagen B, Heim S (2002) Characterization of supernumerary rings and giant marker chromosomes in well-differentiated lipomatous tumors by a combination of G-banding, CGH, M-FISH, and chromosome- and locus-specific FISH. Cytogenet Genome Res 97(1–2):13–19

    Article  PubMed  CAS  Google Scholar 

  19. Kresse SH, Berner JM, Meza-Zepeda LA, Gregory SG, Kuo WL, Gray JW, Forus A, Myklebost O (2005) Mapping and characterization of the amplicon near APOA2 in 1q23 in human sarcomas by FISH and array CGH. Mol Cancer 4:39

    Article  PubMed  Google Scholar 

  20. Mariani O, Brennetot C, Coindre JM, Gruel N, Ganem C, Delattre O, Stern MH, Aurias A (2007) JUN oncogene amplification and overexpression block adipocytic differentiation in highly aggressive sarcomas. Cancer Cell 11(4):361–374

    Article  PubMed  CAS  Google Scholar 

  21. Johnson JE, Gettings EJ, Schwalm J, Pei J, Testa JR, Litwin S, von Mehren M, Broccoli D (2007) Whole-genome profiling in liposarcomas reveals genetic alterations common to specific telomere maintenance mechanisms. Cancer Res 67(19):9221–9228

    Article  PubMed  CAS  Google Scholar 

  22. Tap WD, Eilber FC, Ginther C, Dry SM, Reese N, Barzan-Smith K, Chen HW, Wu H, Eilber FR, Slamon DJ, Anderson L (2011) Evaluation of well-differentiated/de-differentiated liposarcomas by high-resolution oligonucleotide array-based comparative genomic hybridization. Genes Chromosomes Cancer 50(2):95–112

    Article  PubMed  CAS  Google Scholar 

  23. Italiano A, Maire G, Sirvent N, Nuin PA, Keslair F, Foa C, Louis C, Aurias A, Pedeutour F (2009) Variability of origin for the neocentromeric sequences in analphoid supernumerary marker chromosomes of well-differentiated liposarcomas. Cancer Lett 273(2):323–330

    Article  PubMed  CAS  Google Scholar 

  24. Italiano A, Toulmonde M, Cioffi A, Penel N, Isambert N, Bompas E, Duffaud F, Patrikidou A, Lortal B, Le Cesne A, Blay JY, Maki RG, Schwartz GK, Antonescu CR, Singer S, Coindre JM, Bui B (2012) Advanced well-differentiated/dedifferentiated liposarcomas: role of chemotherapy and survival. J Ann Oncol 23(6):1601–1607

    Google Scholar 

  25. Muller CR, Paulsen EB, Noordhuis P, Pedeutour F, Saeter G, Myklebost O (2007) Potential for treatment of liposarcomas with the MDM2 antagonist Nutlin-3A. Int J Cancer 121(1):199–205

    Article  PubMed  CAS  Google Scholar 

  26. Singer S, Socci ND, Ambrosini G, Sambol E, Decarolis P, Wu Y, O'Connor R, Maki R, Viale A, Sander C, Schwartz GK, Antonescu CR (2007) Gene expression profiling of liposarcoma identifies distinct biological types/subtypes and potential therapeutic targets in well-differentiated and dedifferentiated liposarcoma. Cancer Res 67(14):6626–6636

    Article  PubMed  CAS  Google Scholar 

  27. Nishio J, Iwasaki H, Ishiguro M, Ohjimi Y, Fujita C, Ikegami H, Ariyoshi A, Naito M, Kaneko Y, Kikuchi M (2003) Establishment of a novel human dedifferentiated liposarcoma cell line, FU-DDLS-1: conventional and molecular cytogenetic characterization. Int J Oncol 22(3):535–542

    PubMed  Google Scholar 

  28. Hugo ER, Brandebourg TD, Comstock CE, Gersin KS, Sussman JJ, Ben-Jonathan N (2006) LS14: a novel human adipocyte cell line that produces prolactin. Endocrinology 147(1):306–313

    Article  PubMed  CAS  Google Scholar 

  29. Snyder EL, Sandstrom DJ, Law K, Fiore C, Sicinska E, Brito J, Bailey D, Fletcher JA, Loda M, Rodig SJ, Dal Cin P, Fletcher CD (2009) c-Jun amplification and overexpression are oncogenic in liposarcoma but not always sufficient to inhibit the adipocytic differentiation programme. J Pathol 218(3):292–300

    Article  PubMed  CAS  Google Scholar 

  30. Persson F, Olofsson A, Sjogren H, Chebbo N, Nilsson B, Stenman G, Aman P (2008) Characterization of the 12q amplicons by high-resolution, oligonucleotide array CGH and expression analyses of a novel liposarcoma cell line. Cancer Lett 260(1–2):37–47

    Article  PubMed  CAS  Google Scholar 

  31. Wittekind C, Compton CC, Greene FL, Sobin LH (2002) TNM residual tumor classification revisited. Cancer 94(9):2511–2516

    Article  PubMed  Google Scholar 

  32. Fletcher CD (2006) The evolving classification of soft tissue tumours: an update based on the new WHO classification. Histopathology 48(1):3–12

    Article  PubMed  CAS  Google Scholar 

  33. Limon J, Dal Cin P, Sandberg AA (1986) Application of long-term collagenase disaggregation for the cytogenetic analysis of human solid tumors. Cancer Genet Cytogenet 23(4):305–313

    Article  PubMed  CAS  Google Scholar 

  34. Bayani J, Zielenska M, Marrano P, Kwan Ng Y, Taylor MD, Jay V, Rutka JT, Squire JA (2000) Molecular cytogenetic analysis of medulloblastomas and supratentorial primitive neuroectodermal tumors by using conventional banding, comparative genomic hybridization, and spectral karyotyping. J Neurosurg 93(3):437–448

    Article  PubMed  CAS  Google Scholar 

  35. Schrock E, du Manoir S, Veldman T, Schoell B, Wienberg J, Ferguson-Smith MA, Ning Y, Ledbetter DH, Bar-Am I, Soenksen D, Garini Y, Ried T (1996) Multicolor spectral karyotyping of human chromosomes. Science 273(5274):494–497

    Article  PubMed  CAS  Google Scholar 

  36. Jacobs S, Thompson ER, Nannya Y, Yamamoto G, Pillai R, Ogawa S, Bailey DK, Campbell IG (2007) Genome-wide, high-resolution detection of copy number, loss of heterozygosity, and genotypes from formalin-fixed, paraffin-embedded tumor tissue using microarrays. Cancer Res 67(6):2544–2551

    Article  PubMed  CAS  Google Scholar 

  37. Gabrielsson BG, Olofsson LE, Sjogren A, Jernas M, Elander A, Lonn M, Rudemo M, Carlsson LM (2005) Evaluation of reference genes for studies of gene expression in human adipose tissue. Obes Res 13(4):649–652

    Article  PubMed  Google Scholar 

  38. Nilbert M, Rydholm A, Mitelman F, Meltzer PS, Mandahl N (1995) Characterization of the 12q13-15 amplicon in soft tissue tumors. Cancer Genet Cytogenet 83(1):32–36

    Article  PubMed  CAS  Google Scholar 

  39. Berner JM, Forus A, Elkahloun A, Meltzer PS, Fodstad O, Myklebost O (1996) Separate amplified regions encompassing CDK4 and MDM2 in human sarcomas. Genes Chromosomes Cancer 17(4):254–259

    Article  PubMed  CAS  Google Scholar 

  40. Fritz B, Schubert F, Wrobel G, Schwaenen C, Wessendorf S, Nessling M, Korz C, Rieker RJ, Montgomery K, Kucherlapati R, Mechtersheimer G, Eils R, Joos S, Lichter P (2002) Microarray-based copy number and expression profiling in dedifferentiated and pleomorphic liposarcoma. Cancer Res 62(11):2993–2998

    PubMed  CAS  Google Scholar 

  41. Horvai AE, DeVries S, Roy R, O'Donnell RJ, Waldman F (2009) Similarity in genetic alterations between paired well-differentiated and dedifferentiated components of dedifferentiated liposarcoma. Mod Pathol 22(11):1477–1488

    Article  PubMed  CAS  Google Scholar 

  42. Hostein I, Pelmus M, Aurias A, Pedeutour F, Mathoulin-Pelissier S, Coindre JM (2004) Evaluation of MDM2 and CDK4 amplification by real-time PCR on paraffin wax-embedded material: a potential tool for the diagnosis of atypical lipomatous tumours/well-differentiated liposarcomas. J Pathol 202(1):95–102

    Article  PubMed  CAS  Google Scholar 

  43. Sirvent N, Coindre JM, Maire G, Hostein I, Keslair F, Guillou L, Ranchere-Vince D, Terrier P, Pedeutour F (2007) Detection of MDM2-CDK4 amplification by fluorescence in situ hybridization in 200 paraffin-embedded tumor samples: utility in diagnosing adipocytic lesions and comparison with immunohistochemistry and real-time PCR. Am J Surg Pathol 31(10):1476–1489

    Article  PubMed  Google Scholar 

  44. Aleixo PB, Hartmann AA, Menezes IC, Meurer RT, Oliveira AM (2009) Can MDM2 and CDK4 make the diagnosis of well differentiated/dedifferentiated liposarcoma? An immunohistochemical study on 129 soft tissue tumours. J Clin Pathol 62(12):1127–1135

    Article  PubMed  CAS  Google Scholar 

  45. Nishio J (2011) Contributions of cytogenetics and molecular cytogenetics to the diagnosis of adipocytic tumors. J Biomed Biotechnol 2011:524067

    Article  PubMed  Google Scholar 

  46. Tanas MR, Rubin BP, Tubbs RR, Billings SD, Downs-Kelly E, Goldblum JR (2010) Utilization of fluorescence in situ hybridization in the diagnosis of 230 mesenchymal neoplasms: an institutional experience. Arch Pathol Lab Med 134(12):1797–1803

    PubMed  Google Scholar 

  47. Manfredi JJ (2010) The Mdm2-p53 relationship evolves: Mdm2 swings both ways as an oncogene and a tumor suppressor. Genes Dev 24(15):1580–1589

    Article  PubMed  CAS  Google Scholar 

  48. Muller KM, Tveteraas IH, Aasrum M, Odegard J, Dawood M, Dajani O, Christoffersen T, Sandnes DL (2011) Role of protein kinase C and epidermal growth factor receptor signalling in growth stimulation by neurotensin in colon carcinoma cells. BMC Cancer 11(1):421

    Article  PubMed  CAS  Google Scholar 

  49. Szymanska J, Virolainen M, Tarkkanen M, Wiklund T, Asko-Seljavaara S, Tukiainen E, Elomaa I, Blomqvist C, Knuutila S (1997) Overrepresentation of 1q21-23 and 12q13-21 in lipoma-like liposarcomas but not in benign lipomas: a comparative genomic hybridization study. Cancer Genet Cytogenet 99(1):14–18

    Article  PubMed  CAS  Google Scholar 

  50. Szymanska J, Tarkkanen M, Wiklund T, Virolainen M, Blomqvist C, Asko-Seljavaara S, Tukiainen E, Elomaa I, Knuutila S (1996) Gains and losses of DNA sequences in liposarcomas evaluated by comparative genomic hybridization. Genes Chromosomes Cancer 15(2):89–94

    Article  PubMed  CAS  Google Scholar 

  51. Suijkerbuijk RF, Olde Weghuis DE, Van den Berg M, Pedeutour F, Forus A, Myklebost O, Glier C, Turc-Carel C, Geurts van Kessel A (1994) Comparative genomic hybridization as a tool to define two distinct chromosome 12-derived amplification units in well-differentiated liposarcomas. Genes Chromosomes Cancer 9(4):292–295

    Article  PubMed  CAS  Google Scholar 

  52. Ashar HR, Fejzo MS, Tkachenko A, Zhou X, Fletcher JA, Weremowicz S, Morton CC, Chada K (1995) Disruption of the architectural factor HMGI-C: DNA-binding AT hook motifs fused in lipomas to distinct transcriptional regulatory domains. Cell 82(1):57–65

    Article  PubMed  CAS  Google Scholar 

  53. Petit MM, Mols R, Schoenmakers EF, Mandahl N, Van de Ven WJ (1996) LPP, the preferred fusion partner gene of HMGIC in lipomas, is a novel member of the LIM protein gene family. Genomics 36(1):118–129

    Article  PubMed  CAS  Google Scholar 

  54. Petit MM, Schoenmakers EF, Huysmans C, Geurts JM, Mandahl N, Van de Ven WJ (1999) LHFP, a novel translocation partner gene of HMGIC in a lipoma, is a member of a new family of LHFP-like genes. Genomics 57(3):438–441

    Article  PubMed  CAS  Google Scholar 

  55. Berner JM, Meza-Zepeda LA, Kools PF, Forus A, Schoenmakers EF, Van de Ven WJ, Fodstad O, Myklebost O (1997) HMGIC, the gene for an architectural transcription factor, is amplified and rearranged in a subset of human sarcomas. Oncogene 14(24):2935–2941

    Article  PubMed  CAS  Google Scholar 

  56. Meza-Zepeda LA, Berner JM, Henriksen J, South AP, Pedeutour F, Dahlberg AB, Godager LH, Nizetic D, Forus A, Myklebost O (2001) Ectopic sequences from truncated HMGIC in liposarcomas are derived from various amplified chromosomal regions. Genes Chromosomes Cancer 31(3):264–273

    Article  PubMed  CAS  Google Scholar 

  57. Bartuma H, Hallor KH, Panagopoulos I, Collin A, Rydholm A, Gustafson P, Bauer HC, Brosjo O, Domanski HA, Mandahl N, Mertens F (2007) Assessment of the clinical and molecular impact of different cytogenetic subgroups in a series of 272 lipomas with abnormal karyotype. Genes Chromosomes Cancer 46(6):594–606

    Article  PubMed  CAS  Google Scholar 

  58. Persson F, Andren Y, Winnes M, Wedell B, Nordkvist A, Gudnadottir G, Dahlenfors R, Sjogren H, Mark J, Stenman G (2009) High-resolution genomic profiling of adenomas and carcinomas of the salivary glands reveals amplification, rearrangement, and fusion of HMGA2. Genes Chromosomes Cancer 48(1):69–82

    Article  PubMed  CAS  Google Scholar 

  59. Dreux N, Marty M, Chibon F, Velasco V, Hostein I, Ranchere-Vince D, Terrier P, Coindre JM (2010) Value and limitation of immunohistochemical expression of HMGA2 in mesenchymal tumors: about a series of 1052 cases. Mod Pathol 23(12):1657–1666

    Article  PubMed  CAS  Google Scholar 

  60. Tallini G, Vanni R, Manfioletti G, Kazmierczak B, Faa G, Pauwels P, Bullerdiek J, Giancotti V, Van Den Berghe H, Dal Cin P (2000) HMGI-C and HMGI(Y) immunoreactivity correlates with cytogenetic abnormalities in lipomas, pulmonary chondroid hamartomas, endometrial polyps, and uterine leiomyomas and is compatible with rearrangement of the HMGI-C and HMGI(Y) genes. Lab Invest 80(3):359–369

    Article  PubMed  CAS  Google Scholar 

  61. Bartuma H, Panagopoulos I, Collin A, Trombetta D, Domanski HA, Mandahl N, Mertens F (2009) Expression levels of HMGA2 in adipocytic tumors correlate with morphologic and cytogenetic subgroups. Mol Cancer 8:36

    Article  PubMed  Google Scholar 

  62. Craver RD, Fonseca P, Carr R (2010) Pediatric epithelial salivary gland tumors: spectrum of histologies and cytogenetics at a children's hospital. Pediatr Dev Pathol 13(5):348–353

    Article  PubMed  Google Scholar 

  63. Bianchini L, Saada E, Gjernes E, Marty M, Haudebourg J, Birtwisle-Peyrottes I, Keslair F, Chignon-Sicard B, Chamorey E, Pedeutour F (2011) Let-7 microRNA and HMGA2 levels of expression are not inversely linked in adipocytic tumors: analysis of 56 lipomas and liposarcomas with molecular cytogenetic data. Genes Chromosomes Cancer 50(6):442–455

    Article  PubMed  CAS  Google Scholar 

  64. Louis-Brennetot C, Coindre JM, Ferreira C, Perot G, Terrier P, Aurias A (2011) The CDKN2A/CDKN2B/CDK4/CCND1 pathway is pivotal in well-differentiated and dedifferentiated liposarcoma oncogenesis. An analysis of 104 tumors. Genes Chromosomes Cancer 50(11):896–907

    Article  PubMed  CAS  Google Scholar 

  65. Rieker RJ, Joos S, Bartsch C, Willeke F, Schwarzbach M, Otano-Joos M, Ohl S, Hogel J, Lehnert T, Lichter P, Otto HF, Mechtersheimer G (2002) Distinct chromosomal imbalances in pleomorphic and in high-grade dedifferentiated liposarcomas. Int J Cancer 99(1):68–73

    Article  PubMed  CAS  Google Scholar 

  66. Chaplin T, Bernard O, Beverloo HB, Saha V, Hagemeijer A, Berger R, Young BD (1995) The t(10;11) translocation in acute myeloid leukemia (M5) consistently fuses the leucine zipper motif of AF10 onto the HRX gene. Blood 86(6):2073–2076

    PubMed  CAS  Google Scholar 

  67. Tanabe S, Bohlander SK, Vignon CV, Espinosa R 3rd, Zhao N, Strissel PL, Zeleznik-Le NJ, Rowley JD (1996) AF10 is split by MLL and HEAB, a human homolog to a putative Caenorhabditis elegans ATP/GTP-binding protein in an invins(10;11)(p12;q23q12). Blood 88(9):3535–3545

    PubMed  CAS  Google Scholar 

  68. Dobbins SE, Broderick P, Melin B, Feychting M, Johansen C, Andersson U, Brannstrom T, Schramm J, Olver B, Lloyd A, Ma YP, Hosking FJ, Lonn S, Ahlbom A, Henriksson R, Schoemaker MJ, Hepworth SJ, Hoffmann P, Muhleisen TW, Nothen MM, Moebus S, Eisele L, Kosteljanetz M, Muir K, Swerdlow A, Simon M, Houlston RS (2011) Common variation at 10p12.31 near MLLT10 influences meningioma risk. Nat Genet 43(9):825–827

    Article  PubMed  CAS  Google Scholar 

  69. Millevoi S, Trombitas K, Kolmerer B, Kostin S, Schaper J, Pelin K, Granzier H, Labeit S (1998) Characterization of nebulette and nebulin and emerging concepts of their roles for vertebrate Z-discs. J Mol Biol 282(1):111–123

    Article  PubMed  CAS  Google Scholar 

  70. Coser VM, Meyer C, Basegio R, Menezes J, Marschalek R, Pombo-de-Oliveira MS (2010) Nebulette is the second member of the nebulin family fused to the MLL gene in infant leukemia. Cancer Genet Cytogenet 198(2):151–154

    Article  PubMed  CAS  Google Scholar 

  71. Lessard J, Sauvageau G (2003) Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423(6937):255–260

    Article  PubMed  CAS  Google Scholar 

  72. Cao L, Bombard J, Cintron K, Sheedy J, Weetall ML, Davis TW (2011) BMI1 as a novel target for drug discovery in cancer. J Cell Biochem 112(10):2729–2741

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Association pour la Recherche sur le Cancer (ARC 4080 to FP), Institut National du Cancer (projet libre (GENOSTT), and Cancéropôle Provence Alpes Côte d’Azur and Conseil Régional Provence Alpes Côte d’Azur. DMT is the recipient of a Victorian Cancer Agency Clinician Researcher Fellowship.

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florence Pedeutour.

Additional information

Florence Pedeutour and Georges Maire contributed equally to the work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1,081 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedeutour, F., Maire, G., Pierron, A. et al. A newly characterized human well-differentiated liposarcoma cell line contains amplifications of the 12q12-21 and 10p11-14 regions. Virchows Arch 461, 67–78 (2012). https://doi.org/10.1007/s00428-012-1256-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-012-1256-5

Keywords

Navigation