Skip to main content
Log in

Molecular pathology of well-differentiated thyroid carcinomas

  • Review Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

The newly discovered molecular features of well-differentiated thyroid carcinomas derived from follicular cells are reviewed, within the frame of the 2004 WHO classification of thyroid tumours, under the following headings: “Follicular carcinoma”, “Papillary carcinoma”, “Follicular variant of papillary carcinoma” and “Hürthle cell tumours”. A particular emphasis is put on the meaning of PAX8–PPARγ rearrangements, RAS and BRAF mutations, and deletions and mutations of mitochondrial genes and of nuclear genes encoding for mitochondrial enzymes, for thyroid tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Angell J, Lindner D, Shapiro P, Hofmann E, Kalvakolanu D (2000) Identification of GRIM-19, a novel cell death-regulatory gene induced by the interferon- and retinoic acid combination, using a genetic approach. J Biol Chem 275:33416–33426

    Article  PubMed  CAS  Google Scholar 

  2. Baloch ZW, LiVolsi VA (2000) Encapsulated follicular variant of papillary thyroid carcinoma with bone metastases. Mod Pathol 13:861–865

    Article  PubMed  CAS  Google Scholar 

  3. Carcangiu M, Zampi G, Pupi A, Castagnoli A, Rosai J (1985) Papillary carcinoma of the thyroid. A clinicopathologic study of 241 cases treated at the University of Florence, Italy. Cancer 55:805–828

    Article  PubMed  CAS  Google Scholar 

  4. Castro P, Eknaes M, Teixeira MR, Danielsen HE, Soares P, Lothe RA, Sobrinho-Simoes M (2005) Adenomas and follicular carcinomas of the thyroid display two major patterns of chromosomal changes. J Pathol 206:305–311

    Article  PubMed  CAS  Google Scholar 

  5. Castro P, Fonseca E, Magalhaes J, Sobrinho-Simoes M (2002) Follicular, papillary, and “hybrid” carcinomas of the thyroid. Endocr Pathol 13:313–320

    Article  PubMed  Google Scholar 

  6. Castro P, Roque L, Magalhães J, Sobrinho-Simoes M (2005) A subset of follicular variant of papillary carcinoma harbors PAX8–PPARγ translocation. Int J Surg Pathol 206:305–311

    CAS  Google Scholar 

  7. Castro P, Sansonetty F, Soares P, Dias A, Sobrinho-Simoes M (2001) Fetal adenomas and minimally invasive follicular carcinomas of the thyroid frequently display a triploid or near triploid DNA pattern. Virchows Arch 438:336–342

    Article  PubMed  CAS  Google Scholar 

  8. Chem KY, Rosai J (1977) Follicular variant of thyroid papillary carcinoma: a clinicopathologic study of six cases. Am J Surg Pathol 1:123–130

    PubMed  CAS  Google Scholar 

  9. Cheung CC, Ezzat S, Ramyar L, Freeman JL, Asa SL (2000) Molecular basis off Hurthle cell papillary thyroid carcinoma. J Clin Endocrinol Metab 85:878–882

    Article  PubMed  CAS  Google Scholar 

  10. Cheung L, Messina M, Gill A, Clarkson A, Learoyd D, Delbridge L, Wentworth J, Philips J, Clifton-Bligh R, Robinson BG (2003) Detection of the PAX8–PPAR gamma fusion oncogene in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab 88:354–357

    Article  PubMed  CAS  Google Scholar 

  11. Chong H, Lee J, Guan KL (2001) Positive and negative regulation of Raf kinase activity and function by phosphorylation. EMBO J 20:3716–3727

    Article  PubMed  CAS  Google Scholar 

  12. Cohen Y, Xing M, Mambo E, Guo Z, Wu G, Trink B, Beller U, Westra WH, Ladenson PW, Sidransky D (2003) BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst 95:625–627

    Article  PubMed  CAS  Google Scholar 

  13. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton M, Futreal PA (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954

    Article  PubMed  CAS  Google Scholar 

  14. DeLellis RA, Lloyd RV, Heitz PU, Eng C (eds) (2004) World Health Organization classification of tumors. Pathology and genetics of tumours of endocrine organs. IARC Press, Lyon

    Google Scholar 

  15. Dwight T, Thoppe SR, Foukakis T, Lui WO, Wallin G, Hoog A, Frisk T, Larsson C, Zedenius J (2003) Involvement of the PAX8/peroxisome proliferator-activated receptor gamma rearrangement in follicular thyroid tumors. J Clin Endocrinol Metab 8:4440–4445

    Article  CAS  Google Scholar 

  16. Eng C, Kiuru M, Fernandez MJ, Aaltonen LA (2003) A role for mitochondrial enzymes in inherited neoplasia and beyond. Nat Rev Cancer 3:193–202

    Article  PubMed  CAS  Google Scholar 

  17. Evans HL, Vassilopoulou-Sellin R (1998) Follicular and Hurthle cell carcinomas of the thyroid: a comparative study. Am J Surg Pathol 22:1512–1520

    Article  PubMed  CAS  Google Scholar 

  18. Fagin JA (2002) Minireview: branded from the start-distinct oncogenic initiating events may determine tumor fate in the thyroid. Mol Endocrinol 16:903–911

    Article  PubMed  CAS  Google Scholar 

  19. Frattini M, Ferrario C, Bressan P, Balestra D, De Cecco L, Mondellini P, Bongarzone I, Collini P, Gariboldi M, Pilotti S, Pierotti MA, Greco A (2004) Alternative mutations of BRAF, RET and NTRK1 are associated with similar but distinct gene expression patterns in papillary thyroid cancer. Oncogene 23:7436–7440

    Article  PubMed  CAS  Google Scholar 

  20. Giaretti W, Molinu S, Ceccarelli J, Prevosto C (2004) Chromosomal instability, aneuploidy, and gene mutations in human sporadic colorectal adenomas. Cell Oncol 26:301–305

    PubMed  CAS  Google Scholar 

  21. Giaretti W, Pujic N, Rapallo A, Nigro S, Di Vinci A, Geido E, Risio M (1995) K-ras-2 G–C and G–T transversions correlate with DNA aneuploidy in colorectal adenomas. Gastroenterology 108:1040–1047

    Article  PubMed  CAS  Google Scholar 

  22. Giaretti W, Rapallo A, Geido E, Sciutto A, Merlo F, Risio M, Rossini FP (1998) Specific K-ras2 mutations in human sporadic colorectal adenomas are associated with DNA near-diploid aneuploidy and inhibition of proliferation. Am J Pathol 153:1201–1209

    PubMed  CAS  Google Scholar 

  23. Hara H, Fulton N, Yashiro T, Ito K, DeGroot LJ, Kaplan EL (1994) N-ras mutation: an independent prognostic factor for aggressiveness of papillary thyroid carcinoma. Surgery 116:1010–1016

    PubMed  CAS  Google Scholar 

  24. Johannessen JV, Sobrinho-Simões M, Tangen KO (1982) The diagnostic value of flow cytometric DNA measurements in selected disorders of the human thyroid. Am J Clin Pathol 77:20–25

    PubMed  CAS  Google Scholar 

  25. Johannessen JV, Sobrinho-Simoes M, Tangen KO, Lindmo T (1981) A flow cytometric deoxyribonucleic acid analysis of papillary thyroid carcinoma. Lab Invest 45:336–341

    PubMed  CAS  Google Scholar 

  26. Katoh R, Harach HR, Williams ED (1998) Solitary, multiple, and familial oxyphil tumours of the thyroid gland. J Pathol 186:292–299

    Article  PubMed  CAS  Google Scholar 

  27. Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA (2003) High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC–RAS–BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res 63:1454–1457

    PubMed  CAS  Google Scholar 

  28. Kroll TG, Sarraf P, Pecciarini L, Chen CJ, Mueller E, Spiegelman BM, Fletcher JA (2000) PAX8–PPARgamma1 fusion oncogene in human thyroid carcinoma. Science 289:1357–1360

    Article  PubMed  CAS  Google Scholar 

  29. Lewis PD, Baxter P, Griffiths AP, Parry JM, Skibinski DOF (2000) Detection of damage to the mitochondrial genome in the oncocytic cells of Warthins tumour. J Pathol 191:274–281

    Article  PubMed  CAS  Google Scholar 

  30. Lima J, Trovisco V, Soares P, Maximo V, Magalhaes J, Salvatore G, Santoro M, Bogdanova T, Tronko M, Abrosimov A, Jeremiah S, Thomas G, Williams D, Sobrinho-Simoes M (2004) BRAF mutations are not a major event in post-Chernobyl childhood thyroid carcinomas. J Clin Endocrinol Metab 89:4267–4271

    Article  PubMed  CAS  Google Scholar 

  31. Lloyd RV, Erickson LA, Casey MB, Lam KY, Lohse CM, Asa SL, Chan JK, DeLellis RA, Harach HR, Kakudo K, LiVolsi VA, Rosai J, Sebo TJ, Sobrinho-Simoes M, Wenig BM, Lae ME (2004) Observer variation in the diagnosis of follicular variant of papillary thyroid carcinoma. Am J Surg Pathol 28:1336–1340

    Article  PubMed  Google Scholar 

  32. Marques AR, Espadinha C, Catarino AL, Moniz S, Pereira T, Sobrinho LG, Leite V (2002) Expression of PAX8–PPAR gamma 1 rearrangements in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab 87:3947–3952

    Article  PubMed  CAS  Google Scholar 

  33. Máximo V, Botelho T, Capela J, Soares P, Lima J, Taveira A, Amaro T, Barbosa A, Preto A, Harach H, Williams D, Sobrinho-Simões M (2005) Somatic and germline mutation in GRIM-19, a dual function gene involved in mitochondrial metabolism and cell death, is linked to mitochondrion-rich (Hürthle cell) tumours of the thyroid. Br J Cancer 92:1892–1898

    Article  PubMed  CAS  Google Scholar 

  34. Máximo V, Soares P, Lima J, Cameselle-Teijeiro J, Sobrinho-Simões M (2002) Mitochondrial DNA somatic mutations (point mutations and large deletions) and mitochondrial DNA variants in human thyroid pathology. A study with emphasis on Hürthle cell tumors. Am J Pathol 160:1857–1865

    PubMed  Google Scholar 

  35. Máximo V, Sobrinho-Simões M (2000) Hürthle cell tumours of the thyroid. A review with emphasis on mitochondrial abnormalities with clinical relevance. Virchows Arch 437:107–115

    Article  PubMed  Google Scholar 

  36. Maximo V, Sobrinho-Simoes M (2000) Mitochondrial DNA ‘common’ deletion in Hürthle cell lesions of the thyroid. J Pathol 192:561–562

    Article  PubMed  CAS  Google Scholar 

  37. Moniz S, Catarino AL, Marques AR, Cavaco B, Sobrinho L, Leite V (2002) Clonal origin of non-medullary thyroid tumours assessed by non-random X-chromosome inactivation. Eur J Endocrinol 146:27–33

    Article  PubMed  CAS  Google Scholar 

  38. Muller-Hocker J, Jacob U, Seibel P (1998) Hashimoto thyroiditis is associated with defects of cytochrome-c oxidase in oxyphil Askanazy cells and with the common deletion (4,977) of mitochondrial DNA. Ultrastruct Pathol 22:91–100

    Article  PubMed  CAS  Google Scholar 

  39. Namba H, Nakashima M, Hayashi T, Hayashida N, Maeda S, Rogounovitch TI, Ohtsuru A, Saenko VA, Kanematsu T, Yamashita S (2003) Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J Clin Endocrinol Metab 88:4393–4397

    Article  PubMed  CAS  Google Scholar 

  40. Namba H, Rubin SA, Fagin JA (1990) Point mutations of ras oncogenes are an early event in thyroid tumorigenesis. Mol Endocrinol 4:1474–1479

    PubMed  CAS  Google Scholar 

  41. Nikiforov YE (2002) RET/PTC rearrangement in thyroid tumors. Endocr Pathol 13:3–16

    Article  PubMed  CAS  Google Scholar 

  42. Nikiforova MN, Biddinger PW, Caudill CM, Kroll TG, Nikiforov YE (2002) PAX8–PPARgamma rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses. Am J Surg Pathol 26:1016–1023

    Article  PubMed  Google Scholar 

  43. Nikiforova MN, Kimura ET, Gandhi M, Biddinger PW, Knauf JA, Basolo F, Zhu Z, Giannini R, Salvatore G, Fusco A, Santoro M, Fagin JA, Nikiforov YE (2003) BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab 88:5399–53404

    Article  PubMed  CAS  Google Scholar 

  44. Nikiforova MN, Lynch RA, Biddinger PW, Alexander EK, Dorn GW II, Tallini G, Kroll TG, Nikiforov YE (2003) RAS point mutations and PAX8–PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab 88:2318–2326

    Article  PubMed  CAS  Google Scholar 

  45. Oyama T, Suzuki T, Hara F, Iino Y, Ishida T, Sakamoto A, Nakajima T (1995) N-ras mutation of thyroid tumor with special reference to the follicular type. Pathol Int 45:45–50

    Article  PubMed  CAS  Google Scholar 

  46. Papotti M, Botto Micca F, Favero A, Palestini N, Bussolati G (1993) Poorly differentiated thyroid carcinomas with primordial cell component. A group of aggressive lesions sharing insular, trabecular, and solid patterns. Am J Surg Pathol 17:291–301

    Article  PubMed  CAS  Google Scholar 

  47. Rocha AS, Soares P, Seruca R, Máximo V, Matias-Guiu X, Cameselle-Teijero J, Sobrinho-Simões M (2001) Abnormalities of E-cadherin/catenin complex in classical papillary thyroid carcinoma and its diffuse sclerosing variant. J Pathol 194:358–366

    Article  PubMed  CAS  Google Scholar 

  48. Roque L, Nunes VM, Ribeiro C, Martins C, Soares J (2001) Karyotypic characterization of papillary thyroid carcinomas. Cancer 92:2529–2538

    Article  PubMed  CAS  Google Scholar 

  49. Rosai J, Carcangiu ML, DeLellis RA (1993) Tumors of the thyroid gland. Atlas of tumor pathology, 3rd series, fascicle 5. Armed Forces Institute of Pathology, Washington, DC

    Google Scholar 

  50. Rosai J, Zampi G, Carcangiu ML (1983) Papillary carcinoma of the thyroid A discussion of its several morphologic expressions, with particular emphasis on the follicular variant. Am J Surg Pathol 7:809–817

    PubMed  CAS  Google Scholar 

  51. Santoro M, Carlomagno F, Hay ID, Herrmann MA, Grieco M, Melillo R, Pierotti MA, Bongarzone I, Della Porta G, Berger N (1992) Ret oncogene activation in human thyroid neoplasms is restricted to the papillary cancer subtype. J Clin Invest 89:1517–1522

    PubMed  CAS  Google Scholar 

  52. Scarpino S, Cancellario d'Alena F, Di Napoli A, Pasquini A, Marzullo A, Ruco LP (2004) Increased expression of Met protein is associated with up-regulation of hypoxia inducible factor-1 (HIF-1) in tumour cells in papillary carcinoma of the thyroid. J Pathol 202:352–358

    Article  PubMed  CAS  Google Scholar 

  53. Schelfhout LJ, Cornelisse CJ, Goslings BM, Hamming JF, Kuipers-Dijkshoorn NJ, van de Velde CJ, Leuren GJ (1990) Frequency and degree of aneuploidy in benign and malignant thyroid neoplasms. Int J Cancer 45:16–20

    Article  PubMed  CAS  Google Scholar 

  54. Shattuck TM, Westra WH, Ladenson PW, Arnold A (2005) Independent clonal origins of distinct tumor foci in multifocal papillary thyroid carcinoma. N Engl J Med 352:2406–2412

    Article  PubMed  CAS  Google Scholar 

  55. Soares P, Berx G, van Roy F, Sobrinho-Simoes M (1997) E-cadherin gene alterations are rare events in thyroid tumors. Int J Cancer 70:32–38

    Article  PubMed  CAS  Google Scholar 

  56. Soares P, dos Santos NR, Seruca R, Lothe RA, Sobrinho-Simoes M (1997) Benign and malignant thyroid lesions show instability at microsatellite loci. Eur J Cancer 33:293–296

    Article  PubMed  CAS  Google Scholar 

  57. Soares P, Fonseca E, Wynford-Thomas D, Sobrinho-Simoes M (1998) Sporadic ret-rearranged papillary carcinoma of the thyroid: a subset of slow growing, less aggressive thyroid neoplasms? J Pathol 185:71–78

    Article  PubMed  CAS  Google Scholar 

  58. Soares P, Trovisco V, Rocha AS, Feijao T, Rebocho AP, Fonseca E, Vieira De Castro I, Cameselle-Teijeiro J, Cardoso-Oliveira M, Sobrinho-Simoes M (2004) BRAF mutations typical of papillary thyroid carcinoma are more frequently detected in undifferentiated than in insular and insular-like poorly differentiated carcinomas. Virchows Arch 44:572–576

    Google Scholar 

  59. Soares P, Trovisco V, Rocha AS, Lima J, Castro P, Preto A, Maximo V, Botelho T, Seruca R, Sobrinho-Simoes M (2003) BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene 22:4578–4580

    Article  PubMed  CAS  Google Scholar 

  60. Sobrinho-Simoes M, Maximo V, Vieira de Castro I, Fonseca E, Soares P, Garcia-Rostan G, Cardoso de Oliveira M (2005) Hurthle (oncocytic) cell tumors of thyroid: etiopathogenesis, diagnosis and clinical significance. Int J Surg Pathol 13:29–35

    Article  PubMed  Google Scholar 

  61. Sobrinho-Simoes MA, Nesland JM, Holm R, Sambade MC, Johannessen JV (1985) Hurthle cell and mitochondrion-rich papillary carcinomas of the thyroid gland: an ultrastructural and immunocytochemical study. Ultrastruct Pathol 8:131–142

    PubMed  CAS  Google Scholar 

  62. Tallini G, Hsueh A, Liu S, Garcia-Rostan G, Speicher MR, Ward DC (1999) Frequent chromosomal DNA unbalance in thyroid oncocytic (Hurthle cell) neoplasms detected by comparative genomic hybridization. Lab Invest 79:547–555

    PubMed  CAS  Google Scholar 

  63. Tallini G, Ladanyi M, Rosai J, Jhanwar SC (1994) Analysis of nuclear and mitochondrial DNA alterations in thyroid and renal oncocytic tumors. Cytogenet Cell Genet 66:253–259

    PubMed  CAS  Google Scholar 

  64. Tallini G, Santoro M, Helie M, Carlomagno F, Salvatore G, Chiappetta G, Carcangiu ML, Fusco A (1998) RET/PTC oncogene activation defines a subset of papillary thyroid carcinomas lacking evidence of progression to poorly differentiated or undifferentiated tumor phenotypes. Clin Cancer Res 4:287–294

    PubMed  CAS  Google Scholar 

  65. Trovisco V, Soares P, Preto A, Vieira de Castro I, Lima J, Castro P, Máximo V, Botelho T, Moreira S, Meireles AM, Magalhães J, Abrosimov A, Cameselle-Teijeiro J, Sobrinho-Simões M (2005) Type and prevalence of BRAF mutations are closely associated to papillary thyroid carcinoma histotype and patients' age but not with tumour aggressiveness. Virchows Arch 446:589–595

    Article  PubMed  CAS  Google Scholar 

  66. Trovisco V, Soares P, Soares R, Magalhães J, Sá-Couto P, Sobrinho-Simões M (2005) A new BRAF gene mutation detected in a case of a solid variant of papillary thyroid carcinoma. Hum Pathol 36:694–697

    Article  PubMed  CAS  Google Scholar 

  67. Trovisco V, Vieira de Castro I, Soares P, Maximo V, Silva P, Magalhaes J, Abrosimov A, Guiu XM, Sobrinho-Simoes M (2004) BRAF mutations are associated with some histological types of papillary thyroid carcinoma. J Pathol 202:247–251

    Article  PubMed  CAS  Google Scholar 

  68. Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM, Jones CM, Marshall CJ, Springer CJ, Barford D, Marais R (2004) Mechanism of activation of the RAF–ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116:855–867

    Article  PubMed  CAS  Google Scholar 

  69. Wreesmann VB, Ghossein RA, Hezel M, Banerjee D, Shaha AR, Tuttle RM, Shah JP, Rao PH, Singh B (2004) Follicular variant of papillary thyroid carcinoma: genome-wide appraisal of a controversial entity. Genes Chromosomes Cancer 40:355–364

    Article  PubMed  CAS  Google Scholar 

  70. Zhu Z, Gandhi M, Nikiforova MN, Fischer AH, Nikiforov YE (2003) Molecular profile and clinical–pathologic features of the follicular variant of papillary thyroid carcinoma. An unusually high prevalence of ras mutations. Am J Clin Pathol 120:71–77

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Fundação para a Ciência e Tecnologia for grant support to Ana Preto, Ana Sofia Rocha, Patrícia Castro and Valdemar Máximo. This study was supported by Fundação para a Ciência e Tecnologia POCTI/FEDER (POCTI/NSE/48171/2002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Sobrinho-Simões.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sobrinho-Simões, M., Preto, A., Rocha, A.S. et al. Molecular pathology of well-differentiated thyroid carcinomas. Virchows Arch 447, 787–793 (2005). https://doi.org/10.1007/s00428-005-0065-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-005-0065-5

Keywords

Navigation