Skip to main content

Advertisement

Log in

Expression of ADAM15 in lung carcinomas

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

ADAM15, a member of the ADAM (a disintegrin and metalloprotease) family, is a membrane protein containing both protease and adhesion domains and may, thus, be involved in tumor invasion and metastasis. The aim of this study was to analyze the expression of ADAM15 and its potential ligand, integrin αvβ3 (CD51/CD61), in lung carcinoma cell lines and tissues. Most small cell lung carcinomas (SCLCs) and non-SCLC cell lines were ADAM15, αv and β3 integrin mRNA positive. Half of the cell lines expressed ADAM15, and three expressed the αvβ3 heterodimer at the cell surface as shown using flow cytometry. Paraffin sections of pulmonary epithelial tumors, including SCLCs (n=26), squamous cell cancer (SCCs, n=27) and adenocarcinomas (ACs, n=17) were stained with antibodies to the ectosolic and cytosolic domain of ADAM15 and αvβ3 integrin complex. The results were scored (0–12, according to Remmele’s score). Normal epithelial cells of the lung were negative or slightly positive for ADAM15 (score<2). The score was always significantly higher for tumor cells. ACs showed the strongest staining (tumor center; ADAM15ecto; mean±SEM; 5.47±1.04), whereas SCLCs only showed weak ADAM15 expression (2.67±0.42; SCCs: 3.62±0.62). Frequently, significantly stronger ADAM15 expression has been shown in tumor cells located at the front of invasion compared with those within solid formations. Overall analysis of all tumor specimens and each tumor type revealed no significant correlation between tumor stage or degree of differentiation and ADAM15 ectosolic or cytosolic domain expression in tumor cells. Both molecules are often co-localized in the same tumor cells in ADAM15- and αvβ3 integrin-positive carcinomas. In summary, lung carcinoma cell lines and tissues were frequently ADAM15 positive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Akbari O, Panjwani N, Garcia S, Tascon R, Lowrie D, Stockinger B (1999) DNA vaccination: transfection and activation of dendritic cells as key events for immunity. J Exp Med 189:169–178

    Google Scholar 

  2. Asahi Y, Kubonishi I, Imamura J, Kamioka M, Matsushita H, Furihata M, Ohtsuki Y, Miyoshi I (1996) Establishment of a clonal cell line producing granulocyte colony-stimulating factor and parathyroid hormone-related protein from a lung cancer patient with leukocytosis and hypercalcemia. Jpn J Cancer Res 87:451–458

    Google Scholar 

  3. Bepler G, Koehler A, Kiefer P, Havemann K, Beisenherz K, Jaques G, Gropp C, Haeder M (1988) Characterization of the state of differentiation of six newly established human non-small-cell lung cancer cell lines. Differentiation 37:158–171

    Google Scholar 

  4. Bohm BB, Aigner T, Gehrsitz A, Blobel CP, Kalden JR, Burkhardt H (1999) Up-regulation of MDC15 (metargidin) messenger RNA in human osteoarthritic cartilage. Arthritis Rheum 42:1946–1950

    Google Scholar 

  5. Bohm BB, Aigner T, Blobel CP, Kalden JR, Burkhardt H (2001) Highly enhanced expression of the disintegrin metalloproteinase MDC15 (metargidin) in rheumatoid synovial tissue. Arthritis Rheum 44:2046–2054

    Google Scholar 

  6. Brabletz T, Jung A, Hermann K, Gunther K, Hohenberger W, Kirchner T (1998) Nuclear overexpression of the oncoprotein beta-catenin in colorectal cancer is localized predominantly at the invasion front. Pathol Res Pract 194:701–704

    Google Scholar 

  7. Brabletz T, Jung A, Dag S, Hlubek F, Kirchner T (1999) beta-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. Am J Pathol 155:1033–1038

    CAS  PubMed  Google Scholar 

  8. Bredin CG, Sundqvist KG, Hauzenberger D, Klominek J (1998) Integrin dependent migration of lung cancer cells to extracellular matrix components. Eur Respir J 11:400–407

    Google Scholar 

  9. Brooks PC, Stromblad S, Sanders LC, von Schalscha TL, Aimes RT, Stetler-Stevenson WG, Quigley JP, Cheresh DA (1996) Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell 85:683–693

    Google Scholar 

  10. Carreiras F, Denoux Y, Staedel C, Lehmann M, Sichel F, Gauduchon P (1996) Expression and localization of alpha v integrins and their ligand vitronectin in normal ovarian epithelium and in ovarian carcinoma. Gynecol Oncol 62:260–267

    Google Scholar 

  11. Cole SR, Ashman LK, Ey PL (1987) Biotinylation: an alternative to radioiodination for the identification of cell surface antigens in immunoprecipitates. Mol Immunol 24:699–705

    Google Scholar 

  12. Cooper CR, Chay CH, Pienta KJ (2002) The role of alpha(v)beta(3) in prostate cancer progression. Neoplasia 4:191–194

    Google Scholar 

  13. Duffy MJ, Lynn DJ, Lloyd AT, O’Shea CM (2003) The ADAMs family of proteins: from basic studies to potential clinical applications. Thromb Haemost 89:622–631

    Google Scholar 

  14. Eto K, Puzon-McLaughlin W, Sheppard D, Sehara-Fujisawa A, Zhang XP, Takada Y (2000) RGD-independent binding of integrin alpha9beta1 to the ADAM-12 and -15 disintegrin domains mediates cell–cell interaction. J Biol Chem 275:34922–34930

    Google Scholar 

  15. Eto K, Huet C, Tarui T, Kupriyanov S, Liu HZ, Puzon-McLaughlin W, Zhang XP, Sheppard D, Engvall E, Takada Y (2002) Functional classification of ADAMs based on a conserved motif for binding to integrin alpha 9beta 1: implications for sperm-egg binding and other cell interactions. J Biol Chem 277:17804–17810

    Article  CAS  PubMed  Google Scholar 

  16. Gutwein P, Oleszewski M, Mechtersheimer S, Agmon-Levin N, Krauss K, Altevogt P (2000) Role of Src kinases in the ADAM-mediated release of L1 adhesion molecule from human tumor cells. J Biol Chem 275:15490–15497

    Google Scholar 

  17. Hartig W, Riedel A, Grosche J, Edwards RH, Fremeau RT Jr, Harkany T, Brauer K, Arendt T (2003) Complementary distribution of vesicular glutamate transporters 1 and 2 in the nucleus accumbens of rat: relationship to calretinin-containing extrinsic innervation and calbindin-immunoreactive neurons. J Comp Neurol 465:1–10

    Google Scholar 

  18. Heidtmann HH, Salge U, Havemann K, Kirschke H, Wiederanders B (1993) Secretion of a latent, acid activatable cathepsin L precursor by human non-small cell lung cancer cell lines. Oncol Res 5:441–451

    Google Scholar 

  19. Herren B, Raines EW, Ross R (1997) Expression of a disintegrin-like protein in cultured human vascular cells and in vivo. FASEB J 11:173–180

    Google Scholar 

  20. Herren B, Garton KJ, Coats S, Bowen-Pope DF, Ross R, Raines EW (2001) ADAM15 overexpression in NIH3T3 cells enhances cell–cell interactions. Exp Cell Res 271:152–160

    Google Scholar 

  21. Hiendlmeyer E, Regus S, Wassermann S, Hlubek F, Haynl A, Dimmler A, Koch C, Knoll C, van Beest M, Reuning U, Brabletz T, Kirchner T, Jung A (2004) Beta-catenin up-regulates the expression of the urokinase plasminogen activator in human colorectal tumors. Cancer Res 64:1209–1214

    Google Scholar 

  22. Horiuchi K, Weskamp G, Lum L, Hammes HP, Cai H, Brodie TA, Ludwig T, Chiusaroli R, Baron R, Preissner KT, Manova K, Blobel CP (2003) Potential role for ADAM15 in pathological neovascularization in mice. Mol Cell Biol 23:5614–5624

    Google Scholar 

  23. Jung A, Schrauder M, Oswald U, Knoll C, Sellberg P, Palmqvist R, Niedobitek G, Brabletz T, Kirchner T (2001) The invasion front of human colorectal adenocarcinomas shows co-localization of nuclear beta-catenin, cyclin D1, and p16INK4A and is a region of low proliferation. Am J Pathol 159:1613–1617

    Google Scholar 

  24. Kawahara E, Ooi A, Nakanishi I (1995) Integrin distribution in gastric carcinoma: association of beta 3 and beta 5 integrins with tumor invasiveness. Pathol Int 45:493–500

    Google Scholar 

  25. Kikkawa H, Kaihou M, Horaguchi N, Uchida T, Imafuku H, Takiguchi A, Yamazaki Y, Koike C, Kuruto R, Kakiuchi T, Tsukada H, Takada Y, Matsuura N, Oku N (2002) Role of integrin alpha(v)beta3 in the early phase of liver metastasis: PET and IVM analyses. Clin Exp Metastasis 19:717–725

    Google Scholar 

  26. Koukoulis GK, Warren WH, Virtanen I, Gould VE (1997) Immunolocalization of integrins in the normal lung and in pulmonary carcinomas. Hum Pathol 28:1018–1025

    Google Scholar 

  27. Kratzschmar J, Lum L, Blobel CP (1996) Metargidin, a membrane-anchored metalloprotease-disintegrin protein with an RGD integrin binding sequence. J Biol Chem 271:4593–4596

    Google Scholar 

  28. Kuhn K, Eble J (1994) The structural bases of integrin-ligand interactions. Trends Cell Biol 4:256–261

    Google Scholar 

  29. Lewis JM, Cheresh DA, Schwartz MA (1996) Protein kinase C regulates alpha v beta 5-dependent cytoskeletal associations and focal adhesion kinase phosphorylation. J Cell Biol 134:1323–1332

    Google Scholar 

  30. Lieber M, Smith B, Szakal A, Nelson-Rees W, Todaro G (1976) A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. Int J Cancer 17:62–70

    CAS  PubMed  Google Scholar 

  31. Lum L, Reid MS, Blobel CP (1998) Intracellular maturation of the mouse metalloprotease disintegrin MDC15. J Biol Chem 273:26236–26247

    Google Scholar 

  32. Martin J, Eynstone LV, Davies M, Williams JD, Steadman R (2002) The role of ADAM 15 in glomerular mesangial cell migration. J Biol Chem 277:33683–33689

    Google Scholar 

  33. Natali PG, Hamby CV, Felding-Habermann B, Liang B, Nicotra MR, Di Filippo F, Giannarelli D, Temponi M, Ferrone S (1997) Clinical significance of alpha(v)beta3 integrin and intercellular adhesion molecule-1 expression in cutaneous malignant melanoma lesions. Cancer Res 57:1554–1560

    Google Scholar 

  34. Nath D, Slocombe PM, Stephens PE, Warn A, Hutchinson GR, Yamada KM, Docherty AJ, Murphy G (1999) Interaction of metargidin (ADAM-15) with alphavbeta3 and alpha5beta1 integrins on different haemopoietic cells. J Cell Sci 112:579–587

    CAS  PubMed  Google Scholar 

  35. Niki T, Kohno T, Iba S, Moriya Y, Takahashi Y, Saito M, Maeshima A, Yamada T, Matsuno Y, Fukayama M, Yokota J, Hirohashi S (2002) Frequent co-localization of Cox-2 and laminin-5 gamma2 chain at the invasive front of early-stage lung adenocarcinomas. Am J Pathol 160:1129–1141

    Google Scholar 

  36. Remmele W, Hildebrand U, Hienz HA, Klein PJ, Vierbuchen M, Behnken LJ, Heicke B, Scheidt E (1986) Comparative histological, histochemical, immunohistochemical and biochemical studies on oestrogen receptors, lectin receptors, and Barr bodies in human breast cancer. Virchows Arch 409:127–147

    Google Scholar 

  37. Ria R, Vacca A, Ribatti D, Di Raimondo F, Merchionne F, Dammacco F (2002) Alpha(v)beta(3) integrin engagement enhances cell invasiveness in human multiple myeloma. Haematologica 87:836–845

    Google Scholar 

  38. Seals DF, Courtneidge SA (2003) The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev 17:7–30

    Google Scholar 

  39. Seftor RE (1998) Role of the beta3 integrin subunit in human primary melanoma progression: multifunctional activities associated with alpha(v)beta3 integrin expression. Am J Pathol 153:1347–1351

    Google Scholar 

  40. Takaki T (1980) An epithelial cell line (KNS-62) derived from a brain metastasis of bronchial squamous cell carcinoma. J Cancer Res Clin Oncol 96:27–33

    Google Scholar 

  41. Tamura GS, Dailey MO, Gallatin WM, McGrath MS, Weissman IL, Pillemer EA (1984) Isolation of molecules recognized by monoclonal antibodies and antisera: the solid phase immunoisolation technique. Anal Biochem 136:458–464

    Google Scholar 

  42. Travis WD, Bramila E, Müller-Hermelink HK, Curtis CH (2004) WHO classification of tumours: tumours of the lung, pleura, thymus and heart. IARC Press, Lyon

    Google Scholar 

  43. Trochon-Joseph V, Martel-Renoir D, Mir LM, Thomaidis A, Opolon P, Connault E, Li H, Grenet C, Fauvel-Lafeve F, Soria J, Legrand C, Soria C, Perricaudet M, Lu H (2004) Evidence of antiangiogenic and antimetastatic activities of the recombinant disintegrin domain of metargidin. Cancer Res 64:2062–2069

    Google Scholar 

  44. Turner AJ, Hooper NM (1999) Role for ADAM-family proteinases as membrane protein secretases. Biochem Soc Trans 27:255–259

    Google Scholar 

  45. Wang H, Fu W, Im JH, Zhou Z, Santoro SA, Iyer V, DiPersio CM, Yu QC, Quaranta V, Al Mehdi A, Muschel RJ (2004) Tumor cell alpha3 beta1 integrin and vascular laminin-5 mediate pulmonary arrest and metastasis. J Cell Biol 164:935–941

    Google Scholar 

  46. White JM (2003) ADAMs: modulators of cell-cell and cell-matrix interactions. Curr Opin Cell Biol 15:598–606

    Google Scholar 

  47. Wolfsberg TG, Primakoff P, Myles DG, White JM (1995) ADAM, a novel family of membrane proteins containing a disintegrin and metalloprotease domain: multipotential functions in cell–cell and cell–matrix interactions. J Cell Biol 131:275–278

    Article  CAS  PubMed  Google Scholar 

  48. Wu E, Croucher PI, McKie N (1997) Expression of members of the novel membrane linked metalloproteinase family ADAM in cells derived from a range of haematological malignancies. Biochem Biophys Res Commun 235:437–442

    Google Scholar 

  49. Yasui A, Matsuura K, Shimizu E, Hijiya N, Higuchi Y, Yamamoto S (2004) Expression of splice variants of the human ADAM15 gene and strong interaction between the cytoplasmic domain of one variant and Src family proteins Lck and Hck. Pathobiology 71:185–192

    Google Scholar 

  50. Zhang XP, Kamata T, Yokoyama K, Puzon-McLaughlin W, Takada Y (1998) Specific interaction of the recombinant disintegrin-like domain of MDC-15 (metargidin, ADAM-15) with integrin alphavbeta3. J Biol Chem 273:7345–7350

    Google Scholar 

Download references

Acknowledgements

We would like to thank M. Steinert (currently at the Städtisches Krankenhaus Martha-Maria Halle-Dölau) for providing tissues, and D. Sittig for her contribution in performing experiments. This study was supported by the Interdisciplinary Center for Clinical Research (IZKF) Leipzig at the Faculty of Medicine, University of Leipzig (project D6 and Z10, 01KS9504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Schütz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schütz, A., Härtig, W., Wobus, M. et al. Expression of ADAM15 in lung carcinomas. Virchows Arch 446, 421–429 (2005). https://doi.org/10.1007/s00428-004-1193-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-004-1193-z

Keywords

Navigation