Skip to main content
Log in

Rapid evolution of a novel signalling mechanism by concerted duplication and divergence of a BMP ligand and its extracellular modulators

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Gene duplication and divergence is widely considered to be a fundamental mechanism for generating evolutionary novelties. The Bone Morphogenetic Proteins (BMPs) are a diverse family of signalling molecules found in all metazoan genomes that have evolved by duplication and divergence from a small number of ancestral types. In the fruit fly Drosophila, there are three BMPs: Decapentaplegic (Dpp) and Glass bottom boat (Gbb), which are the orthologues of vertebrate BMP2/4 and BMP5/6/7/8, respectively, and Screw (Scw), which, at the sequence level, is equally divergent from Dpp and Gbb. It has recently been shown that Scw has arisen from a duplication of Gbb in the lineage leading to higher Diptera. We show that since this duplication event, Gbb has maintained the ancestral BMP5/6/7/8 functionality while Scw has rapidly diverged. The evolution of Scw was accompanied by duplication and divergence of a suite of extracellular regulators that continue to diverge together in the higher Diptera. In addition, Scw has become restricted in its receptor specificity: Gbb proteins can signal through the Type I receptors Thick veins (Tkv) and Saxophone (Sax), while Scw signals through Sax. Thus, in a relatively short span of evolutionary time, the duplication event that gave rise to Scw produced not only a novel ligand but also a novel signalling mode that is functionally distinct from the ancestral Gbb mode. Our results demonstrate the plasticity of the BMP pathway not only in evolving new family members and new functions but also new signalling modes by redeploying key regulators in the pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arora K, Nusslein-Volhard C (1992) Altered mitotic domains reveal fate map changes in Drosophila embryos mutant for zygotic dorsoventral patterning genes. Development 114:1003–1024

    CAS  PubMed  Google Scholar 

  • Arora K, Levine MS, O’Connor MB (1994) The screw gene encodes a ubiquitously expressed member of the TGF-beta family required for specification of dorsal cell fates in the Drosophila embryo. Genes Dev 8:2588–2601

    Article  CAS  PubMed  Google Scholar 

  • Ballard SL, Jarolimova J, Wharton KA (2010) Gbb/BMP signaling is required to maintain energy homeostasis in Drosophila. Dev Biol 337:375–385

    Article  CAS  PubMed  Google Scholar 

  • Bonds M, Sands J, Poulson W, Harvey C, Von Ohlen T (2007) Genetic screen for regulators of ind expression identifies shrew as encoding a novel twisted gastrulation-like protein involved in Dpp signaling. Dev Dyn 236:3524–3531

    Article  CAS  PubMed  Google Scholar 

  • Casillas S, Negre B, Barbadilla A, Ruiz A (2006) Fast sequence evolution of Hox and Hox-derived genes in the genus Drosophila. BMC Evol Biol 6:106

    Article  PubMed  Google Scholar 

  • Chen Y, Riese MJ, Killinger MA, Hoffmann FM (1998) A genetic screen for modifiers of Drosophila decapentaplegic signaling identifies mutations in punt, Mothers against dpp and the BMP-7 homologue, 60A. Development 125:1759–1768

    CAS  PubMed  Google Scholar 

  • Dick A, Hild M, Bauer H, Imai Y, Maifeld H, Schier AF, Talbot WS, Bouwmeester T, Hammerschmidt M (2000) Essential role of Bmp7 (snailhouse) and its prodomain in dorsoventral patterning of the zebrafish embryo. Development 127:343–354

    CAS  PubMed  Google Scholar 

  • Erwin DH, Davidson EH (2002) The last common bilaterian ancestor. Development 129:3021–3032

    CAS  PubMed  Google Scholar 

  • Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545

    CAS  PubMed  Google Scholar 

  • Gaunt MW, Miles MA (2002) An insect molecular clock dates the origin of the insects and accords with palaeontological and biogeographic landmarks. Mol Biol Evol 19:748–761

    CAS  PubMed  Google Scholar 

  • Herpin A, Lelong C, Favrel P (2004) Transforming growth factor-beta-related proteins: an ancestral and widespread superfamily of cytokines in metazoans. Dev Comp Immunol 28:461–485

    Article  CAS  PubMed  Google Scholar 

  • Holley SA, Jackson PD, Sasai Y, Lu B, De Robertis EM, Hoffmann FM, Ferguson EL (1995) A conserved system for dorsal-ventral patterning in insects and vertebrates involving sog and chordin. Nature 376:249–253

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Innis CA, Shi J, Blundell TL (2000) Evolutionary trace analysis of TGF-beta and related growth factors: implications for site-directed mutagenesis. Protein Eng 13:839–847

    Article  CAS  PubMed  Google Scholar 

  • Katoh Y, Katoh M (2006) Comparative integromics on BMP/GDF family. Int J Mol Med 17:951–955

    CAS  PubMed  Google Scholar 

  • Lemons D, McGinnis W (2006) Genomic evolution of Hox gene clusters. Science 313:1918–1922

    Article  CAS  PubMed  Google Scholar 

  • Little SC, Mullins MC (2009) Bone morphogenetic protein heterodimers assemble heteromeric type I receptor complexes to pattern the dorsoventral axis. Nat Cell Biol 11:637–643

    Article  CAS  PubMed  Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    Article  CAS  PubMed  Google Scholar 

  • Lynch M, Force A (2000) The probability of duplicate gene preservation by subfunctionalization. Genetics 154:459–473

    CAS  PubMed  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. CSHL Press, Cold Spring Harbor

    Google Scholar 

  • McCabe BD, Marques G, Haghighi AP, Fetter RD, Crotty ML, Haerry TE, Goodman CS, O’Connor MB (2003) The BMP homolog Gbb provides a retrograde signal that regulates synaptic growth at the Drosophila neuromuscular junction. Neuron 39:241–254

    Article  CAS  PubMed  Google Scholar 

  • McGregor AP (2005) How to get ahead: the origin, evolution and function of bicoid. Bioessays 27:904–913

    Article  CAS  PubMed  Google Scholar 

  • Neul JL, Ferguson EL (1998) Spatially restricted activation of the SAX receptor by SCW modulates DPP/TKV signaling in Drosophila dorsal-ventral patterning. Cell 95:483–494

    Article  CAS  PubMed  Google Scholar 

  • Newfeld SJ, Wisotzkey RG, Kumar S (1999) Molecular evolution of a developmental pathway: phylogenetic analyses of transforming growth factor-beta family ligands, receptors and Smad signal transducers. Genetics 152:783–795

    CAS  PubMed  Google Scholar 

  • Nguyen M, Park S, Marques G, Arora K (1998) Interpretation of a BMP activity gradient in Drosophila embryos depends on synergistic signaling by two type I receptors, SAX and TKV. Cell 95:495–506

    Article  CAS  PubMed  Google Scholar 

  • O’Connor MB, Umulis D, Othmer HG, Blair SS (2006) Shaping BMP morphogen gradients in the Drosophila embryo and pupal wing. Development 133:183–193

    Article  PubMed  Google Scholar 

  • Pirrotta V (1988) Vectors for P-element transformation in Drosophila. In: Rodriguez RL, Denhardt DT (eds) Vectors: a survey of molecular cloning vectors and their uses. Butterworth, Boston, pp 437–456

    Google Scholar 

  • Rafiqi AM, Lemke S, Ferguson S, Stauber M, Schmidt-Ott U (2008) Evolutionary origin of the amnioserosa in cyclorrhaphan flies correlates with spatial and temporal expression changes of zen. Proc Natl Acad Sci USA 105:234–239

    Article  CAS  PubMed  Google Scholar 

  • Raftery AE (1996) Hypothesis testing and model selection. In: Gilks WR, Richardson S, Spiegelhalter DJ (eds) Markov chain Monte Carlo in practice. Chapman & Hall, London, pp 163–188

    Google Scholar 

  • Rawson JM, Lee M, Kennedy EL, Selleck SB (2003) Drosophila neuromuscular synapse assembly and function require the TGF-beta type I receptor saxophone and the transcription factor Mad. J Neurobiol 55:134–150

    Article  CAS  PubMed  Google Scholar 

  • Ray RP, Wharton KA (2001) Context-dependent relationships between the BMPs gbb and dpp during development of the Drosophila wing imaginal disk. Development 128:3913–3925

    CAS  PubMed  Google Scholar 

  • Ronquist F, van der Mark P, Huelsenbeck JP (2009) Bayesian phylogenetic analysis using MRBAYES. In: Lemey P, Salemi M, Vandamme A-M (eds) The phylogenetic handbook. Cambridge University Press, Cambridge

    Google Scholar 

  • Serpe M, Ralston A, Blair SS, O’Connor MB (2005) Matching catalytic activity to developmental function: tolloid-related processes Sog in order to help specify the posterior crossvein in the Drosophila wing. Development 132:2645–2656

    Article  CAS  PubMed  Google Scholar 

  • Shimmi O, O’Connor MB (2003) Physical properties of Tld, Sog, Tsg and Dpp protein interactions are predicted to help create a sharp boundary in Bmp signals during dorsoventral patterning of the Drosophila embryo. Development 130:4673–4682

    Article  CAS  PubMed  Google Scholar 

  • Shimmi O, Ralston A, Blair SS, O’Connor MB (2005a) The crossveinless gene encodes a new member of the Twisted gastrulation family of BMP-binding proteins which, with Short gastrulation, promotes BMP signaling in the crossveins of the Drosophila wing. Dev Biol 282:70–83

    Article  CAS  PubMed  Google Scholar 

  • Shimmi O, Umulis D, Othmer H, O’Connor MB (2005b) Facilitated transport of a Dpp/Scw heterodimer by Sog/Tsg leads to robust patterning of the Drosophila blastoderm embryo. Cell 120:873–886

    Article  CAS  PubMed  Google Scholar 

  • Singer MA, Penton A, Twombly V, Hoffmann FM, Gelbart WM (1997) Signaling through both type I DPP receptors is required for anterior-posterior patterning of the entire Drosophila wing. Development 124:79–89

    CAS  PubMed  Google Scholar 

  • Suchard MA, Weiss RE, Sinsheimer JS (2001) Bayesian selection of continuous-time Markov chain evolutionary models. Mol Biol Evol 18:1001–1013

    CAS  PubMed  Google Scholar 

  • Twombly V, Bangi E, Le V, Malnic B, Singer MA, Wharton KA (2009) Functional analysis of saxophone, the Drosophila gene encoding the BMP type I receptor ortholog of human ALK1/ACVRL1 and ACVR1/ALK2. Genetics 183:563–579, 1SI-8SI

    Article  CAS  PubMed  Google Scholar 

  • Van der Zee M, da Fonseca RN, Roth S (2008) TGFbeta signaling in Tribolium: vertebrate-like components in a beetle. Dev Genes Evol 218:203–213

    Article  PubMed  Google Scholar 

  • Vilmos P, Sousa-Neves R, Lukacsovich T, Marsh JL (2005) crossveinless defines a new family of Twisted-gastrulation-like modulators of bone morphogenetic protein signalling. EMBO Rep 6:262–267

    Article  CAS  PubMed  Google Scholar 

  • Wharton KA, Thomsen GH, Gelbart WM (1991) Drosophila 60A gene, another transforming growth factor beta family member, is closely related to human bone morphogenetic proteins. Proc Natl Acad Sci USA 88:9214–9218

    Article  CAS  PubMed  Google Scholar 

  • Wharton KA, Cook JM, Torres-Schumann S, de Castro K, Borod E, Phillips DA (1999) Genetic analysis of the bone morphogenetic protein-related gene, gbb, identifies multiple requirements during Drosophila development. Genetics 152:629–640

    CAS  PubMed  Google Scholar 

  • Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18:691–699

    CAS  PubMed  Google Scholar 

  • Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Nielsen R, Goldman N, Pedersen AM (2000) Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155:431–449

    CAS  PubMed  Google Scholar 

  • Yeates DK, Wiegmann BM (1999) Congruence and controversy: toward a higher-level phylogeny of Diptera. Annu Rev Entomol 44:397–428

    Article  CAS  PubMed  Google Scholar 

  • Zhang J (2003) Evolution by gene duplication: an update. Tends in Ecology and Evolution 18:292–298

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Claire Greer and James Patterson for their contributions to the early stages of this work and to the Drosophila Stock Centers, Malaria Research and Reference Reagent Resource, and the Drosophila Genome Resource Center for reagents. We are grateful to Wendy Gibson for providing Glossina morsitans, and Hazel Smith for the stalk-eyed flies Teleopsis dalmanni and Diasemopsis meigenii, Mark Wamalwa for access to the draft version of the G. morsitans genome, and Al Handler for access to the draft version of the C. capitata genome and Elio Sucena for performing the BLAST searches for Gbb and Scw. We would like to thank Hilary Ashe, Mark Dionne, Florian Maderspacher, and Stefan Thomsen for critical reading of the manuscript and to colleagues in the School of Life Sciences for helpful discussions. During the writing of this manuscript, C.F. was supported by a Wellcome Trust Programme Grant to Juan-Pablo Couso. The research was funded by grants from the Biotechnology and Biological Sciences Research Council (BB/C508050/1) and Medical Research Council (G0500916) to R.P.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert P. Ray.

Additional information

Communicated by: P. Simpson

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplement 1

  (PDF 1.11 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fritsch, C., Lanfear, R. & Ray, R.P. Rapid evolution of a novel signalling mechanism by concerted duplication and divergence of a BMP ligand and its extracellular modulators. Dev Genes Evol 220, 235–250 (2010). https://doi.org/10.1007/s00427-010-0341-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-010-0341-5

Keywords

Navigation