Skip to main content
Log in

Muscle development in the marbled crayfish—insights from an emerging model organism (Crustacea, Malacostraca, Decapoda)

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

The development of the crustacean muscular system is still poorly understood. We present a structural analysis of muscle development in an emerging model organism, the marbled crayfish—a representative of the Cambaridae. The development and differentiation of muscle tissue and its relation to the mesoderm-forming cells are described using fluorescent and non-fluorescent imaging tools. We combined immunohistochemical staining for early isoforms of myosin heavy chain with phallotoxin staining of F-actin, which distinguishes early and more differentiated myocytes. We were thus able to identify single muscle precursor cells that serve as starting points for developing muscular units. Our investigations show a significant developmental advance in head appendage muscles and in the posterior end of the longitudinal trunk muscle strands compared to other forming muscle tissues. These findings are considered evolutionary relics of larval developmental features. Furthermore, we document the development of the muscular heart tissue from myogenic precursors and the formation and differentiation of visceral musculature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abzhanov A, Kaufman TC (2000) Evolution of distinct expression patterns for engrailed paralogues in higher crustaceans (Malacostraca). Dev Genes Evol 210:493–506

    Article  CAS  Google Scholar 

  • Alwes F, Scholtz G (2006) Stages and other aspects of the embryology of the parthenogenetic marmorkrebs (Decapoda, Reptantia, Astacida). Dev Genes Evol 216:169–184

    Article  PubMed  Google Scholar 

  • Baylies MK, Bate M, Gomez MR (1998) Myogenesis: a view from Drosophila. Cell 93:921–927

    Article  CAS  PubMed  Google Scholar 

  • Bodmer R (1993) The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development 118:719–729

    CAS  PubMed  Google Scholar 

  • Blanchard CE (1986) Early development of the thorax and nervous system of the brine shrimp Artemia. Dissertation, University of Leicester, p 68

    Google Scholar 

  • Campos-Ortega JA, Hartenstein V (1997) The embryonic development of Drosophila melanogaster. Springer, Berlin, p 405

    Google Scholar 

  • Dalbis A, Pantaloni C, Bechet JJ (1979) Electrophoretic study of native myosin isozymes and of their subunit content. Eur J Biochem 99:261–265

    Article  CAS  Google Scholar 

  • Daniel RJ (1930a) The abdominal muscles of the shore crab (Carcinus maenas Fabr.) and the zoea and megalopa stages. Proc Trans Liverpool Biol Soc 45:50–56

    Google Scholar 

  • Daniel RJ (1930b) Comparative study of the abdominal muscles in Malacostraca. Part 1. The main ventral muscles of the typical abdominal segments. Proc Trans Liverp Biol Soc 45:57–71

    Google Scholar 

  • Daniel RJ (1930c) The abdominal muscular systems of the zoea and mysis stages of the shrimp (Crangon vulgaris Fabr.) and their bearing on phylogeny. Proc Trans Liverpool Biol Soc 44:95–109

    Google Scholar 

  • Dohle W (1970) Die Bildung und Differenzierung des postnauplialen Keimstreifs von Diastylis rathkei (Crustacea): I Die Bildung der Teloblasten und ihrer Derivate. Z Morphol Tiere 67:307–392

    Article  Google Scholar 

  • Dohle W (1972) Über die Bildung und Differenzierung des postnauplialen Keimstreifs von Leptochelia spec. (Crustacea, Tanaidacea). Zool Jb Anat 89:503–566

    Google Scholar 

  • Fischer A, Scholtz G (2010) Axogenesis in the stomatopod crustacean Gonodactylaceus falcatus (Malacostraca). Invertebr Bio 129:59–76

    Article  Google Scholar 

  • Gerberding M, Browne WE, Patel NH (2002) Cell lineage analysis of the amphipod crustacean Parhyale hawaiensis reveals an early restriction of cell fates. Development 129:5789–5801

    Article  CAS  PubMed  Google Scholar 

  • Hartenstein V, Mandal L (2006) The blood/vascular system in a phylogenetic perspective. BioEssays 28:1203–1210

    Article  PubMed  Google Scholar 

  • Harzsch S, Kreissl S (in press) Myogenesis in the thoracic limbs of the American lobster. Arthr Struct Dev. doi:10.1016/j.asd.2010.06.001

  • Hertzler PL, Freas WR (2009) Pleonal muscle development in the shrimp Penaeus (Litopenaeus) vannamei (Crustacea: Malacostraca: Decapoda: Dendrobranchiata). Arthr Struct Dev 38:235–246

    Article  Google Scholar 

  • Janssen R, Damen WGM (2008) Diverged and conserved aspects of heart formation in a spider. Evol Dev 10:155–165

    Article  CAS  PubMed  Google Scholar 

  • Kiernan DA, Hertzler PL (2006) Muscle development in dendrobranchiate shrimp, with comparison with Artemia. Evol Dev 8:537–549

    Article  PubMed  Google Scholar 

  • Kreissl S, Uber A, Harzsch S (2008) Muscle precursor cells in the developing limbs of two isopods (Crustacea, Peracarida): an immunohistochemical study using a novel monoclonal antibody against myosin heavy chain. Dev Genes Evol 218:253–265

    Article  CAS  PubMed  Google Scholar 

  • Oishi S (1959) Studies on the teloblasts in the decapod embryo. 1. Origin of teloblasts in Heptacarpus rectirostris (Stimpson). Embryologica 4:283–309

    Article  Google Scholar 

  • Oishi S (1960) Studies on the teloblasts in the decapod embryo. 2. Origin of teloblasts in Pagurus samuelis (Stimpson) and Hemigrapsus sanguineus (de Haan). Embryologica 5:270–282

    Article  Google Scholar 

  • Paululat A, Holz A, Renkawitz-Pohl R (1999) Essential genes for myoblast fusion in Drosophila embryogenesis. Mech Dev 83:17–26

    Article  CAS  PubMed  Google Scholar 

  • Price AL, Patel NH (2008) Investigating divergent mechanisms of mesoderm development in arthropods: the expression of Ph-twist and Ph-mef2 in Parhyale hawaiensis. J Exp Zool B Mol Dev Evol 310:24–40

    Article  PubMed  Google Scholar 

  • Richter S, Scholtz G (2001) Phylogenetic analysis of the Malacostraca (Crustacea). J Zool Syst Evol Res 39:113–136

    Article  Google Scholar 

  • Scholtz G (1990) The formation, differentiation and segmentation of the post-naupliar germ band of the amphipod Gammarus pulex L. (Crustacea, Malacostraca, Peracarida). Proc R Soc Lond 239:163–211

    Article  Google Scholar 

  • Scholtz G (1992) Cell lineage studies in the crayfish Cherax destructor (Crustacea, Decapoda): germ band formation, segmentation, and early neurogenesis. Roux’s Arch Dev Biol 202:36–48

    Article  Google Scholar 

  • Scholtz G (2002) The Articulata hypothesis—or what is a segment? Org Divers Evol 2:197–215

    Article  Google Scholar 

  • Scholtz G, Braband A, Tolley L, Reimann A, Mittmann B, Lukhaup C, Steuerwald F, Voigt G (2003) Parthenogenesis in an outsider crayfish. Nature 421:1431–1434

    Article  Google Scholar 

  • Seitz R, Vilpoux K, Hopp U, Harzsch S, Maier G (2005) Ontogeny of the Marmorkrebs (marbled crayfish): a parthenogenetic crayfish with unknown origin and phylogenetic position. J Exp Zool 303A:393–405

    Article  Google Scholar 

  • Steffens G, Xie F, Kutsch W, Reichert H (1995) Segmental differentiation processes in embryonic muscle development of the grasshopper. Roux's Arch Dev Biol 204:453–464

    Article  Google Scholar 

  • Vilpoux K, Sandeman R, Harzsch S (2006) Early embryonic development of the central nervous system in the Australian crayfish and the Marbled crayfish (Marmorkrebs). Dev Genes Evol 216:209–223

    Article  CAS  PubMed  Google Scholar 

  • Vogt G, Tolley L, Scholtz G (2004) Life stages and reproductive components of the Marmorkrebs (marbled crayfish), the first parthenogenetic decapod crustacean. J Morph 261:286–311

    Article  PubMed  Google Scholar 

  • Weygoldt P (1958) Die Embryonalentwicklung des Amphipoden Gammarus pulex pulex (L.). Zool Jb Anat 77:51–110

    Google Scholar 

  • Weygoldt P (1961) Beitrag zur Kenntnis der Ontogenie der Dekapoden: Embryologische Untersuchungen. Zool Jb Anat 79:223–270

    Google Scholar 

  • Wilkens JL, Yazawa T, Cavey MJ (1997) Evolutionary derivation of the American lobster cardiovascular system: an hypothesis based on morphological and physiological evidence. Invertebr Biol 116:30–38

    Article  Google Scholar 

  • Wilkens JL (1999) Evolution of the cardiovascular system in Crustacea. Am Zool 39:119–214

    Google Scholar 

  • Wirkner CS, Richter S (2009a) Evolutionary morphology of the circulatory system in Peracarida (Malacostraca; Crustacea). Cladistics 25:1–25

    Article  Google Scholar 

  • Wirkner CS, Richter S (2009b) The circulatory system in malacostraca: evaluating character evolution on the basis of differing phylogenetic hypotheses. Arthr Syst Phyl 67:57–70

    Google Scholar 

  • Wolff C, Scholtz G (2002) Cell lineage, axis formation and the origin of germ layers in the amphipod crustacean Orchestia cavimana. Dev Biol 250:44–58

    Article  CAS  PubMed  Google Scholar 

  • Xie F, Garzino V, Herianos S, Meier T, Reichert H (1994) Embryonic expression of muscle-specific antigens in the grasshopper Schistocerca gregaria. Roux's Arch Dev Biol 204:141–145

    Article  CAS  Google Scholar 

  • Young JH (1959) Morphology of the white shrimp Penaeus setiferus (Linnaeus, 1758). Fishery Bulletin US 59:1–168

    CAS  Google Scholar 

Download references

Acknowledgements

The 4D9 anti-EN/INVECTED monoclonal antibody developed by Corey Goodman (University of California, Berkeley) was obtained from the Developmental Studies Hybridoma Bank, which was developed under the auspices of the NICHD and is maintained by The University of Iowa, Iowa City, IA 52242. We also express our gratitude to Frederike Alwes for instructions on crayfish care, egg handling, dissection, and staining. Thanks also to Lucy Cathrow for improving the English of the manuscript. This study was supported by the DFG grant Ri837/8-1 to SR, Wo1461/1-1 to CW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günther Jirikowski.

Additional information

Communicated by S. Roth

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jirikowski, G., Kreissl, S., Richter, S. et al. Muscle development in the marbled crayfish—insights from an emerging model organism (Crustacea, Malacostraca, Decapoda). Dev Genes Evol 220, 89–105 (2010). https://doi.org/10.1007/s00427-010-0331-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-010-0331-7

Keywords

Navigation