Skip to main content
Log in

Relocations of cell convergence sites and formation of pharyngula-like shapes in mechanically relaxed Xenopus embryos

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Influence of the relaxation of mechanical tensions upon collective cell movements, shape formation, and expression patterns of tissue-specific genes has been studied in Xenopus laevis embryos. We show that the local relaxation of tensile stresses within the suprablastoporal area (SBA) performed at the early-midgastrula stage leads to a complete arrest of normal convergent cell intercalation towards the dorsal midline. As a result, SBA either remains nondeformed or protrudes a strip of cells migrating ventralwards along one of the lateral lips of the opened blastopore. Already, few minutes later, the tissues in the ventral lip vicinity undergo abnormal transversal contraction/longitudinal extension resulting in the abnormal cell convergence toward ventral (rather than dorsal) embryo midline. Within a day, the dorsally relaxed embryos acquire pharyngula-like shapes and often possess tail-like protrusions. Their antero-posterior and dorso-ventral polarity, as well as expression patterns of pan-neural (Sox3), muscular cardiac actin, and forebrain (Otx2) genes substantially deviate from the normal ones. We suggest that normal gastrulation is permanently controlled by mechanical stresses within the blastopore circumference. The role of tissue tensions in regulating collective cell movements and creating pharyngula-like shapes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Beloussov LV, Grabovsky VI (2006) Morphomechanics: goals, basic experiments and models. Int J Devel Biol 50:81–92

    Article  Google Scholar 

  • Beloussov LV, Dorfman JG, Cherdantzev VG (1975) Mechanical stresses and morphological patterns in amphibian embryos. J Embryol exp Morphol 34:559–574

    PubMed  CAS  Google Scholar 

  • Beloussov LV, Louchinskaia NN, Stein AA (2000) Tension-dependent collective cell movements in the early gastrula ectoderm of Xenopus laevis embryos. Dev Genes Evol 210:92–104

    Article  PubMed  CAS  Google Scholar 

  • Beloussov LV, Louchinskaia NN, Ermakov AS, Glagoleva NS (2006) Gastrulation in amphibian embryos, regarded as a succession of biomechanical feedback events. Int J Devel Biol 50:113–122

    Article  Google Scholar 

  • Davidson LA, Keller R, DeSimone D (2004) Patterning and tissue movements in a novel explant preparation of the marginal zone of Xenopus laevis. Gene Expression Patterns 4:457–466

    Article  PubMed  CAS  Google Scholar 

  • Ermakov AS, Beloussov LV (1998) Morphogenetical and differentiation consequences of the relaxation of mechanical tensions in Xenopus laevis blastula. Ontogenez (Russ J Devel Biol) 29:450–458

    CAS  Google Scholar 

  • Ewald AJ, Peyrot SM, Tyszka MJ, Fraser SE, Wallingford JB (2004) Regional requirements for Dishevelled signaling during Xenopus gastrulation: separable effects on blastopore closure, mesendoderm internalization and archenteron formation. Development 131:6195–6209

    Article  PubMed  CAS  Google Scholar 

  • Farge E (2003) Mechanical induction of Twist in the Drosophila foregut/stomodeal primordium. Curr Biol 13:1365–1377

    Article  PubMed  CAS  Google Scholar 

  • Gordon R (2006) Mechanics in embryogenesis and embryonics: prime mover or epiphenomenon? Int J Devel Biol 50:243–253

    Google Scholar 

  • Harland RM (1991) In situ hybridization: an improved whole-mount method for Xenopus embryos. Methods Cell Biol 36:685–695

    Article  PubMed  CAS  Google Scholar 

  • Hutson MS, Tokutake Y, Chang M-S, Bloor JW, Venakides S, Kiehart DP, Edwards GS (2003) Forces for morphogenesis investigated with laser microsurgery and quantitative modeling. Science 300:145–149

    Article  PubMed  CAS  Google Scholar 

  • Ingber DE (2006) Mechanical control of tissue morphogenesis during embryonic development. Int J Devel Biol 50:255–266

    Article  Google Scholar 

  • Keller R, Danilchik M (1988) Regional expression, pattern and timing of convergence and extension during gastrulation of Xenopus laevis. Development 103:193–209

    PubMed  CAS  Google Scholar 

  • Keller RL, Davidson A, Edlund T, Elul M, Shook D, Skoglund P (2000) Mechanisms of convergence and extension by cell intercalation. Philos Trans R Soc Lond B Biol Sci 355:897–922

    Article  PubMed  CAS  Google Scholar 

  • Lamb TM, Knecht AK, Smith WC, Stachel SE, Economides AN, Stahl N, Yancopolous GD, Harland RM (1993) Neural induction by the secreted polypeptide noggin. Science 262:713–718

    Article  PubMed  CAS  Google Scholar 

  • Masazumi T, Concha ML (2001) Vertebrate gastrulation: Calcium waves orchestrate cell movements. Curr Biol 11:R470–R472

    Article  Google Scholar 

  • McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6:483–495

    Article  PubMed  CAS  Google Scholar 

  • Mohun TJ, Brennan S, Dathan N, Fairman S, Gurdon JB (1984) Cell typespecific activation of actin genes in the early amphibian embryo. Nature 311:716–721

    Article  PubMed  CAS  Google Scholar 

  • Nieuwkoop PD, Faber J (1956) Normal table of Xenopus laevis (Daudin). North-Holland, Amsterdam

    Google Scholar 

  • Pennisi E (1997) Haeckel’s embryos: fraud rediscovered. Science 277:1435

    Article  PubMed  CAS  Google Scholar 

  • Peralta XG, Toyama Y, Hutson MS, Montague R, Venakides S, Kiehart DP, Edwards GS (2007) Upregulation of forces and morphogenic asymmetries in dorsal closure during Drosophila development. Biophys J 92:2583–2596

    Article  PubMed  CAS  Google Scholar 

  • Raff RA (1994) Developmental mechanisms in the evolution of animal form: origins and evolvability of body plants. In: Bengston S (ed) Early Life on Earth. Columbia University Press, New York, pp 489–500

    Google Scholar 

  • Shih J, Keller R (1992a) Patterns of cell motility in the organizer and dorsal mesoderm of Xenopus laevis. Development 116:915–930

    PubMed  CAS  Google Scholar 

  • Shih J, Keller R (1992b) The epithelium of the dorsal marginal zone of Xenopus has organizer properties. Development 116:887–899

    PubMed  CAS  Google Scholar 

  • Troshina TG, Beloussov LV (2009) Mechanodependent cell movements in the axial organs of Xenopus gastrulae. Ontogenez (Russ J Dev Biol) 40(20) (in press)

  • Unterseher F, Hefele JA, Giehl K, Eddy M, De Robertis EM, Wedlich D, Schambony A (2004) Paraxial protocadherin coordinates cell polarity during convergent extension via Rho A and JNK. EMBO J 23:3259–3269

    Article  PubMed  CAS  Google Scholar 

  • Wilson P, Keller R (1991) Cell rearrangements during gastrulation of Xenopus: direct observations of cultured explants. Development 112:289–300

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Russian Fund for Fundamental Investigations (RFFI), grant # 05-04-48681.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lev V. Beloussov.

Additional information

Communicated by T. Hollemann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kornikova, E.S., Korvin-Pavlovskaya, E.G. & Beloussov, L.V. Relocations of cell convergence sites and formation of pharyngula-like shapes in mechanically relaxed Xenopus embryos. Dev Genes Evol 219, 1–10 (2009). https://doi.org/10.1007/s00427-008-0259-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-008-0259-3

Keywords

Navigation