Skip to main content
Log in

A genomewide survey of developmentally relevant genes in Ciona intestinalis

X. Genes for cell junctions and extracellular matrix

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Cell junctions and the extracellular matrix (ECM) are crucial components in intercellular communication. These systems are thought to have become highly diversified during the course of vertebrate evolution. In the present study, we have examined whether the ancestral chordate already had such vertebrate systems for intercellular communication, for which we have searched the genome of the ascidian Ciona intestinalis. From this molecular perspective, the Ciona genome contains genes that encode protein components of tight junctions, hemidesmosomes and connexin-based gap junctions, as well as of adherens junctions and focal adhesions, but it does not have those for desmosomes. The latter omission is curious, and the ascidian type-I cadherins may represent an ancestral form of the vertebrate type-I cadherins and desmosomal cadherins, while Ci-Plakin may represent an ancestral protein of the vertebrate desmoplakins and plectins. If this is the case, then ascidians may have retained ancestral desmosome-like structures, as suggested by previous electron-microscopic observations. In addition, ECM genes that have been regarded as vertebrate-specific were also found in the Ciona genome. These results suggest that the last common ancestor shared by ascidians and vertebrates, the ancestor of the entire chordate clade, had essentially the same systems of cell junctions as those in extant vertebrates. However, the number of such genes for each family in the Ciona genome is far smaller than that in vertebrate genomes. In vertebrates these ancestral cell junctions appear to have evolved into more diverse, and possibly more complex, forms, compared with those in their urochordate siblings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  • Aurrand-Lions M, Duncan L, Ballestrem C, Imhof BA (2001a) JAM-2, a novel immunoglobulin superfamily molecule, expressed by endothelial and lymphatic cells. J Biol Chem 276:2733–2741

    Article  PubMed  CAS  Google Scholar 

  • Aurrand-Lions M, Johnson-Leger C, Wong C, Du Pasquier L, Imhof BA (2001b) Heterogeneity of endothelial junctions is reflected by differential expression and specific subcellular localization of the three JAM family members. Blood 98:3699–3707

    Article  PubMed  CAS  Google Scholar 

  • Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L, Eddy SR, Griffiths-Jones S, Howe KL, Marshall M, Sonnhammer EL (2002) The Pfam protein families database. Nucleic Acids Res 30:276–280

    Article  PubMed  CAS  Google Scholar 

  • Bone Q (1972) The origin of chordates. Oxford University Press, London

  • Bruzzone R, White TW, Goodenough DA (1996) The cellular Internet: on-line with connexins. BioEssays 18:709–718

    Article  PubMed  CAS  Google Scholar 

  • Burke RD (1999) Invertebrate integrins: structure, function, and evolution. Int Rev Cytol 191:257–284

    Article  PubMed  CAS  Google Scholar 

  • Cameron CB, Garey JR, Swalla BJ (2000) Evolution of the chordate body plan: new insights from phylogenetic analyses of deuterostome phyla. Proc Natl Acad Sci USA 97:4469–4474

    Article  PubMed  CAS  Google Scholar 

  • Chervitz SA, Aravind L, Sherlock G, Ball CA, Koonin EV, Dwight SS, Harris MA, Dolinski K, Mohr S, Smith T, Weng S, Cherry JM, Botstein D (1998) Comparison of the complete proteins sets of worm and yeast: orthology and divergence. Science 282:2022–2028

    Article  PubMed  CAS  Google Scholar 

  • Chiba S, Awazu S, Itoh M, Chin-Bow ST, Satoh N, Satou Y, Hastings KEM (2003) A genomewide survey of developmentally relevant genes in Ciona intestinalis. IX. Genes for muscle structural proteins. Dev Genes Evol DOI 10.1007/s00427-003-0324-x

  • Cloney RA (1972) Cytoplasmic filaments and morphogenesis effects of cytochalasin B on contractile epidermal cells. Z Zellforsch Mikrosk Anat 132:167–192

    Article  PubMed  CAS  Google Scholar 

  • Colognato H, Yurchenco PD (2000) Form and function: the laminin family of heterotrimers. Dev Dyn 218:213–234

    Article  PubMed  CAS  Google Scholar 

  • D'Atri F, Citi S (2002) Molecular complexity of vertebrate tight junctions. Mol Membrane Biol 19:103–112

    Article  Google Scholar 

  • Dehal P, Satou Y, Campbell RK, et al (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298:2157–2167

    Article  PubMed  CAS  Google Scholar 

  • Evans WH, Martin PE (2002) Gap junctions: structure and function. Mol Membrane Biol 19:121–136

    Article  CAS  Google Scholar 

  • Garrod DR, Merritt AJ, Nie ZX (2002) Desmosomal adhesion: structural basis, molecular mechanism and regulation. Mol Membrane Biol 19:81–94

    Article  CAS  Google Scholar 

  • Garstang W (1928) The morphology of the Tunicata, and its bearings on the phylogeny of the Chordata. Q J Microsc Sci 72:51–187

    Google Scholar 

  • Georges D (1979) Gap and tight junctions in tunicates. Study in conventional and freeze-fracture techniques. Tissue Cell 11:781–792

    Article  PubMed  CAS  Google Scholar 

  • Hino K, Satou Y, Yagi K, Satoh N (2003) A genomewide survey of developmentally relevant genes in Ciona intestinalis. VI. Genes for Wnt, TGFβ, Hedgehog and JAK/STAT signaling pathways. Dev Genes Evol DOI 10.1007/s00427-003-318-8

  • Horwitz A, Duggan K, Buck C, Beckerle MC, Burridge K (1986) Interaction of plasma membrane fibronectin receptor with talin--a transmembrane linkage. Nature 320:531–533

    Article  PubMed  CAS  Google Scholar 

  • Hotta K, Takahashi H, Asakura T, Saitoh B, Takatori N, Satou Y, Satoh N (2000) Characterization of Brachyury-downstream notochord genes in the Ciona intestinalis embryo. Dev Biol 224:69–80

    Article  PubMed  CAS  Google Scholar 

  • Huber JD, Egleton RD, Davis TP (2001) Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier. Trends Neurosci 24:719–725

    Article  PubMed  CAS  Google Scholar 

  • Hutter H, Vogel BE, Plenefisch JD, Norris CR, Proenca RB, Spieth J, Guo C, Mastwal S, Zhu X, Scheel J, Hedgecock EM (2000) Conservation and novelty in the evolution of cell adhesion and extracellular matrix genes. Science 287:989–994

    Article  PubMed  CAS  Google Scholar 

  • Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    Article  PubMed  CAS  Google Scholar 

  • Hynes RO, Zhao Q (2000) The evolution of cell adhesion. J Cell Biol 150:F85–F95

    Article  Google Scholar 

  • Imai K, Takada N, Satoh N, Satou Y (2000) β-Catenin mediates the specification of endoderm cells in ascidian embryos. Development 127:3009–3020

    PubMed  CAS  Google Scholar 

  • Itoh M, Furuse M, Morita K, Kubota K, Saitou M, Tsukita S (1999) Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. J Cell Biol 147:1351–1363

    Article  PubMed  CAS  Google Scholar 

  • Janssens B, Goossens S, Staes K, Gilbert B, van Hengel J, Colpaert C, Bruyneel E, Mareel M, van Roy F (2001) αT-Catenin: a novel tissue-specific β-catenin-binding protein mediating strong cell-cell adhesion. J Cell Sci 114:3177–3188

    PubMed  CAS  Google Scholar 

  • Kaiser D (2001) Building a multicellular organism. Ann Rev Genet 35:103–123

    Article  PubMed  CAS  Google Scholar 

  • Kollmar R, Nakamura SK, Kappler JA, Hudspeth AJ (2001) Expression and phylogeny of claudins in vertebrate primordia. Proc Natl Acad Sci USA 98:10196–10201

    Article  PubMed  CAS  Google Scholar 

  • Kumar NM, Gilula NB (1996) The gap junction communication channel. Cell 84:381–388

    Article  PubMed  CAS  Google Scholar 

  • Lane NJ, Dallai R, Burighel P, Martinucci GB (1986) Tight and gap junctions in the intestinal tract of tunicates (Urochordata): a freeze-fracture study. J Cell Sci 84:1-17

    PubMed  CAS  Google Scholar 

  • Letunic I, Goodstadt L, Dickens NJ, Doerks T, Schultz J, Mott R, Ciccarelli F, Copley RR, Ponting CP, Bork P (2002) Recent improvements to the SMART domain-based sequence annotation resource. Nucleic Acids Res 30:242–244

    Article  PubMed  CAS  Google Scholar 

  • Levi L, Douek J, Osman M, Bosch TC, Rinkevich B (1997) Cloning and characterization of BS-cadherin, a novel cadherin from the colonial urochordate Botryllus schlosseri. Gene 200:117–123

    Article  PubMed  CAS  Google Scholar 

  • Lorber V, Rayns DG (1972) Cellular junctions in the tunicate heart. J Cell Sci 10:211–227

    PubMed  CAS  Google Scholar 

  • Martin-Padura I, Lostaglio S, Schneemann M, Williams L, Romano M, Fruscella P, Panzeri C, Stoppacciaro A, Ruco L, Villa A, Simmons D, Dejana E (1998) Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol 142:117–127

    Article  PubMed  CAS  Google Scholar 

  • McMahan UJ (1990) The agrin hypothesis. Cold Spring Harbor Symp Quant Biol 50:407–418

    Article  Google Scholar 

  • Meinertzhagen IA, Okamura Y (2001) The larval ascidian nervous system: the chordate brain from its small beginnings. Trends Neurosci 24:401–410

    Article  PubMed  CAS  Google Scholar 

  • Miyazawa S, Azumi K, Nonaka M (2001) Cloning and characterization of integrin α subunits from the solitary ascidian, Halocynthia roretzi. J Immunol 166:1710–1715

    PubMed  CAS  Google Scholar 

  • Moroi S, Saitou M, Fujimoto K, Sakakibara A, Furuse M, Yoshida O, Tsukita S (1998) Occludin is concentrated at tight junctions of mouse/rat but not human/guinea pig Sertoli cells in testes. Am J Physiol 274:C1708–C1717

    PubMed  CAS  Google Scholar 

  • Nollet F, Kools P, van Roy F (2000) Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. J Mol Biol 299:551–572

    Article  PubMed  CAS  Google Scholar 

  • O'Brien J, Bruzzone R, White TW, Al-Ubaidi MR, Ripps H (1998) Cloning and expression of two related connexins from the perch retina define a distinct subgroup of the connexin family. J Neurosci 18:7625–7637

    PubMed  Google Scholar 

  • Oda H, Tsukita S (1999) Nonchordate classic cadherins have a structurally and functionally unique domain that is absent from chordate classic cadherins. Dev Biol 216:406–422

    Article  PubMed  CAS  Google Scholar 

  • Oda H, Wada H, Tagawa K, Akiyama-Oda Y, Satoh N, Humphreys T, Zhang S, Tsukita S (2002) A novel amphioxus cadherin that localizes to epithelial adherens junctions has an unusual domain organization with implications for chordate phylogeny. Evol Dev 4:426–434

    Article  PubMed  CAS  Google Scholar 

  • Panchin Y, Kelmanson I, Matz M, Lukyanov K, Usman N, Lukyanov S (2000) A ubiquitous family of putative gap junction molecules. Curr Biol 10:R473–474

    Article  PubMed  CAS  Google Scholar 

  • Phelan P, Starich TA (2001) Innexins get into the gap. BioEssays 23:388–396

    Article  PubMed  CAS  Google Scholar 

  • Phelan P, Bacon JP, Davies JA, et al (1999) Innexins: a family of invertebrate gap-junction proteins. Trends Genet 14:348–349

    Article  Google Scholar 

  • Rubin GM, Yandell MD, Wortman JR, et al (2000) Comparative genomics of the eukaryotes. Science 287:2204–2215

    Article  PubMed  CAS  Google Scholar 

  • Saitou M, Fujimoto K, Doi Y, Itoh M, Fujimoto T, Furuse M, Takano H, Noda T, Tsukita S (1998) Occludin-deficient embryonic stem cells can differentiate into polarized epithelial cells bearing tight junctions. J Cell Biol 141:397–408

    Article  PubMed  CAS  Google Scholar 

  • Sasakura Y, Yamada L, Takatori N, Satou Y, Satoh N (2003) A genomewide survey of developmentally relevant genes in Ciona intestinalis. VII. Molecules involved in the regulation of cell polarity and actin dynamics. Dev Genes Evol DOI 10.1007/s00427-003-325-9

  • Satou Y, Chiba S, Satoh N (1999) Expression cloning of an ascidian syndecan suggests its role in embryonic cell adhesion and morphogenesis. Dev Biol 211:198–207

    Article  PubMed  CAS  Google Scholar 

  • Satou Y, Imai KS, Satoh N (2001) Early embryonic expression of a LIM-homeobox gene Cs-lhx3 is downstream of β-catenin and responsible for the endoderm differentiation in Ciona savignyi embryos. Development 128:3559–3570

    PubMed  CAS  Google Scholar 

  • Satou Y, Yamada L, Mochizuki Y, Takatori N, Kawashima T, Sasaki A, Hamaguchi M, Awazu S, Yagi K, Sasakura Y, Nakayama A, Ishikawa H, Inaba K, Satoh N (2002) A cDNA resource from the basal chordate Ciona intestinalis. Genesis 33:153–154

    Article  PubMed  CAS  Google Scholar 

  • Satou Y, Imai KS, Levine M, Kohara Y, Rokhsar D, Satoh N (2003) A genomewide survey of developmentally relevant genes in Ciona intestinalis. I. Genes for bHLH transcription factors. Dev Genes Evol DOI 10.1007/s00427-003-319-7

  • Selleck SB (2000) Proteoglycans and pattern formation: sugar biochemistry meets developmental genetics. Trends Genet 16:206–212

    Article  PubMed  CAS  Google Scholar 

  • Sharma CP, Ezzell RM, Arnaout MA (1995) Direct interaction of filamin (ABP-280) with the beta 2-integrin subunit CD18. J Immunol 154:3461–3470

    PubMed  CAS  Google Scholar 

  • Tepass U (2002) Adherens junctions: new insight into assembly, modulation and function. BioEssays 24:690–695

    Article  PubMed  CAS  Google Scholar 

  • Tsukita S, Furuse M, Itoh M (2001) Multifunctional strands in tight junctions. Nature Rev Mol Cell Biol 2:285–293

    Article  CAS  Google Scholar 

  • Usui T, Shima Y, Shimada Y, Hirano S, Burgess RW, Schwartz TL, Takeichi M, Uemura T (1999) Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of frizzled. Cell 98:585–595

    Article  PubMed  CAS  Google Scholar 

  • Wada H, Satoh N (1994) Details of the evolutionary history from invertebrates to vertebrates, as deduced from the sequences of 18S rDNA. Proc Natl Acad Sci USA 91:1801–1804

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Karabinos A, Zimek A, Meyer M, Riemer D, Hudson C, Lemaire P, Weber K (2002) Cytoplasmic intermediate filament protein expression in tunicate development: a specific marker for the test cells. Eur J Cell Biol 81:302–311

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Grants-in-Aid for Scientific Research from MEXT, Japan to Y. Satou (13044001) and N.S. (12202001), by a CREST project of Japan Science and Technology Corporation (N.S., E.S., and S.W.) and by support from NSERC, Ottawa (to I.A.M.). Y. Sasakura was a Postdoctoral Fellow of JSPS with research grant no. 14000967. We thank Kazuko Hirayama, Chikako Imaizumi, Asako Fujimoto, and Hisayoshi Ishikawa for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nori Satoh.

Additional information

Edited by D. Tautz

The first two authors contributed equally to this work

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasakura, Y., Shoguchi, E., Takatori, N. et al. A genomewide survey of developmentally relevant genes in Ciona intestinalis . Dev Genes Evol 213, 303–313 (2003). https://doi.org/10.1007/s00427-003-0320-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-003-0320-1

Keywords

Navigation