Skip to main content

Advertisement

Log in

Comparative proteome analysis of metabolic changes by low phosphorus stress in two Brassica napus genotypes

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

In an attempt to determine the adaptation strategy to phosphorous (Pi) deficiency in oilseed rape, comparative proteome analyses were conducted to investigate the differences of metabolic changes in two oilseed rape genotypes with different tolerance to low phosphorus (LP). Generally in either roots or leaves, there existed few low phosphorus (LP)-induced proteins shared in the two lines. The LP-tolerant genotype 102 maintained higher Pi concentrations than LP-sensitive genotype 105 when growing hydroponically under the 5-μM phosphorus condition. In 102 we observed the downregulation of the proteins related to gene transcription, protein translation, carbon metabolism, and energy transfer in leaves and roots, and the downregulation of proteins related to leaf growth and root cellular organization. But the proteins related to the formation of lateral root were upregulated, such as the auxin-responsive family proteins in roots and the sucrose-phosphate synthase-like protein in roots and leaves. On the other hand, the LP-sensitive genotype 105 maintained the low level of Pi concentrations and suffered high oxidative pressure under the LP condition, and stress-shocking proteins were pronouncedly upregulated such as the proteins for signal transduction, gene transcription, secondary metabolism, universal stress family proteins, as well as the proteins involved in lipid oxygenation and the disease resistance in both leaves and roots. Although the leaf proteins for growth in 105 were downregulated, the protein expressions in roots related to glycolysis and tricarboxylic acid (TCA) cycle were enhanced to satisfy the requirement of organic acid secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

2-DE:

Two-dimensional gel electrophoresis

APase:

Acid phosphatase

GST:

Glutathione transferase

HSPs:

Heat shock proteins

IEF:

Isoelectric focusing

IPG:

Immobilized pH gradient

LP:

Low phosphorus condition

MS:

Flight mass spectrometry

P:

Phosphorus

PMF:

Peptide mass fingerprinting

ROS:

Reactive oxygen species

SP:

Sufficient phosphorus condition

TCA:

Tricarboxylic acid

References

  • Albertin W, Langella O, Joets J, Négroni L, Zivy M, Damerval C (2009) Comparative proteomics of leaf, stem, and root tissues of synthetic Brassica napus. Proteomics 9:793–799

    Article  CAS  PubMed  Google Scholar 

  • Asmar F, Gahoonia TS, Nielsen NE (1995) Barley genotypes differ in activity of soluble extracellular phosphatase and depletion of organic phosphorus in the rhizosphere soil. Plant Soil 172:117–122

    Article  CAS  Google Scholar 

  • Ayabe S, Akashi T (2006) Cytochrome P450s in flavonoid metabolism. Phytochem Rev 5:271–282

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cao T, Srivastavaa S, Rahmana MH, Kava NNV, Hotte N, Deyholos MK (2008) Proteome-level changes in the roots of Brassica napus as a result of Plasmodiophora brassicae infection. Plant Sci 174:97–115

    CAS  Google Scholar 

  • Charron JBF, Ouellet F, Houde M, Sarhan F (2008) The plant apolipoprotein D ortholog protects Arabidopsis against oxidative stress. BMC Plant Biol 8:86

    Article  PubMed  Google Scholar 

  • Choi YE, Kwon KW, Lee JC, Woo SY (2007) Expression of the rice cytoplasmic cysteine synthase gene in tobacco reduces ozone-induced damage. Plant Biotechnol Rep 1:93–100

    Article  Google Scholar 

  • Du J, Xie HL, Zhang DQ, He XQ, Wang MJ, Li YZ, Cui KM, Lu MZ (2006) Regeneration of the secondary vascular system in poplar as a novel system to investigate gene expression by a proteomic approach. Proteomics 6:881–895

    Article  PubMed  Google Scholar 

  • Fatland BL, Nikolau BJ, Wurtele ES (2005) Reverse genetic characterization of cytosolic acetyl-CoA generation by ATP-citrate lyase in Arabidopsis. Plant Cell 17:182–203

    Article  CAS  PubMed  Google Scholar 

  • Frankenberger WT, Tabatabai MA (1982) Amidase and urease activities in plants. Plant Soil 64:153–166

    Article  CAS  Google Scholar 

  • Fukuda T, Saito A, Wasaki J, Shinano T, Osaki M (2007) Metabolic alterations proposed by proteome in rice roots grown under low P and high Al concentration under low pH. Plant Sci 172:1157–1165

    Article  CAS  Google Scholar 

  • Galat A, Metcalfe SM (1995) Peptidylproline cis/trans isomerases. Prog Biophys Mol Biol 63:67–118

    Article  CAS  PubMed  Google Scholar 

  • Gilbert GA, Knight JD, Vance CP, Allan DL (2000) Proteoid root development of phosphorus deficient lupin is mimicked by auxin and phosphonate. Ann Bot 85:921–928

    Article  CAS  Google Scholar 

  • Hajduch M, Casteel JE, Hurrelmeyer KE, Song Z, Agrawal GK, Thelen JJ (2006) Proteomic analysis of seed filling in Brassica napus. Developmental characterization of metabolic isozymes using high-resolution two-dimensional gel electrophoresis. Plant Physiol 141:32–46

    Article  CAS  PubMed  Google Scholar 

  • Hajheidari M, Abdollahian-Noghabi M, Askari H, Heidari M, Sadeghian SY, Ober ES, Salekdeh GH (2005) Proteome analysis of sugar beet leaves under drought stress. Proteomics 5:950–960

    Article  CAS  PubMed  Google Scholar 

  • Hammond JP, Bennett MJ, Bowen HC, Broadley MR, Eastwood DC, May ST (2003) Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiol 132:578–596

    Article  CAS  PubMed  Google Scholar 

  • Hammond JP, Broadley MR, White PJ, King GJ, Bowen HC, Hayden R (2009) Shoot yield drives phosphorus use efficiency in Brassica oleracea and correlates with root architecture traits. J Exp Bot 60:1953–1968

    Article  CAS  PubMed  Google Scholar 

  • Haran S, Logendra S, Seskar M, Bratanova M, Raskin I (2000) Characterization of Arabidopsis acid phosphatase promoter and regulation of acid phosphatase expression. Plant Physiol 124:615–626

    Article  CAS  PubMed  Google Scholar 

  • Haygarth PM, Jarvis SC (1999) Transfer of phosphorus from agricultural soils. Adv Agron 66:196–249

    Google Scholar 

  • Hernández G, Ramírez M, Valdés-López O, Tesfaye M, Graham MA, Czechowski T et al (2007) Phosphorus stress in common bean: root transcript and metabolic responses. Plant Physiol 144:752–767

    Article  PubMed  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Cal Agric Exp Stat Cir 347:1–32

    Google Scholar 

  • Hollender C, Liu Z (2008) Histone deacetylase genes in Arabidopsis development. J Integr Plant Biol 50:875–885

    Article  CAS  PubMed  Google Scholar 

  • Hopkins MT, Lampi Y, Wang TW, Liu Z, Thompson JE (2008) Eukaryotic translation initiation factor 5A is involved in pathogen-induced cell death and development of disease symptoms in Arabidopsis. Plant Physiol 148:479–489

    Article  CAS  PubMed  Google Scholar 

  • Jain A, Poling MD, Karthikeyan AS, Blakeslee JJ, Peer WA, Titapiwatanakun B, Murphy AS, Raghothama KG (2007) Differential effects of sucrose and auxin on localized phosphate deficiency-induced modulation of different traits of root system architecture in Arabidopsis. Plant Physiol 144:232–247

    Article  CAS  PubMed  Google Scholar 

  • Jain R, Katavic v, Agrawal GK, Guzov VM, Thelen JJ (2008) Purification and proteomic characterization of plastids from Brassica napus developing embryos. Proteomics 8:3397–3405

    Article  CAS  PubMed  Google Scholar 

  • Johnson JF, Allan DL, Vance CP (1994) Phosphorus stress-induced proteoid roots show altered metabolism in Lupinus albus. Plant Physiol 104:657–665

    CAS  PubMed  Google Scholar 

  • Jorrín-Novo JV, Maldonado AM, Echevarría-Zomeño S, Valledor L, Castillejo MA, Curto M (2009) Plant proteomics update (2007–2008): second-generation proteomic techniques, an appropriate experimental design, and data analysis to fulfill MIAPE standards, increase plant proteome coverage and expand biological knowledge. J Proteomics 72:285–314

    Article  PubMed  Google Scholar 

  • Keren N, Ohkawa H, Welsh EA, Liberton M, Pakrasi HB (2005) Psb29, a conserved 22-kD protein, functions in the biogenesis of photosystem II complexes in Synechocystis and Arabidopsis. Plant Cell 17:2768–2781

    Article  CAS  PubMed  Google Scholar 

  • Landini P, Volkert MR (1995) RNA polymerase alpha subunit binding site in positively controlled promoters: a new model. EMBO J 14:4329–4335

    CAS  PubMed  Google Scholar 

  • LeCain DR, Morgan JA, Milchunas DG, Mosier AR, Nelson JA, Smith DP (2006) Root biomass of individual species, and root size characteristics after five years of CO2 enrichment on native shortgrass steppe. Plant Soil 279:219–228

    Article  CAS  Google Scholar 

  • Li K, Xu C, Zhang K, Yang A, Zhang J (2007) Proteomic analysis of roots growth and metabolic changes under phosphorus deficit in maize (Zea mays L.) plants. Proteomics 7:1501–1512

    Article  CAS  PubMed  Google Scholar 

  • Li K, Xu C, Li Z, Zhang K, Yang A, Zhang J (2008) Comparative proteome analyses of phosphorus responses in maize (Zea mays L.) roots of wild-type and a low-P-tolerant mutant reveal root characteristics associated with phosphorus efficiency. Plant J 55:927–939

    Article  CAS  PubMed  Google Scholar 

  • Li LH, Qiu XH, Li XH, Wang SP, Zhang QF, Lian XM (2010) Transcriptomic analysis of rice responses to low phosphorus stress. Chin Sci Bull 55:251–258

    Article  CAS  Google Scholar 

  • Lurin C, Andrés C, Aubourg S (2004) Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential roles in organelle biogenesis. Plant Cell 16:2089–2103

    Article  CAS  PubMed  Google Scholar 

  • Maccarrone M, Zadelhoff GV, Veldink GA, Vliegenthart JF, Finazzi-Agrò A (2000) Early activation of lipoxygenase in lentil (Lens culinaris) root protoplasts by oxidative stress induces programmed cell death. Eur J Biochem 267:5078–5084

    Article  CAS  PubMed  Google Scholar 

  • Misson J, Raghothama KG, Jain A, Jouhet J, Block MA, Bligny R et al (2005) A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci USA 102:11934–11939

    Article  CAS  PubMed  Google Scholar 

  • Müller R, Morant M, Jarmer H, Nilsson L, Nielsen TH (2007) Genome-wide analysis of the Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism. Plant Physiol 143:156–171

    Article  PubMed  Google Scholar 

  • Muñoz FJ, Labrador E, Dopico B (1998) Brassinolides promote the expression of a new Cicer arietinum β-tubulin gene involved in the epicotyl elongation. Plant Mol Biol 37:807–817

    Article  PubMed  Google Scholar 

  • Nanamori M, Shinano T, Wasaki J, Yamamura T, Rao IM, Osaki M (2004) Low phosphorus tolerance mechanisms: phosphorus recycling and photosynthate partitioning in the tropical forage grass, Brachiaria hybrid cultivar Mulato compared with rice. Plant Cell Physiol 45:460–469

    Article  CAS  PubMed  Google Scholar 

  • Neumann G, Romheld V (1999) Root excretion of carboxylic acids and protons in phosphorus-deficient plants. Plant Soil 211:121–130

    Article  CAS  Google Scholar 

  • Pandey A, Chakraborty S, Datta A, Chakraborty N (2008) Proteomics approach to identify dehydration responsive nuclear proteins from Chickpea (Cicer arietinum L.). Mol Cell Proteomics 7:88–107

    CAS  PubMed  Google Scholar 

  • Pérez-Torresa CA, López-Bucio J, Cruz-Ramírez A, Ibarra-Laclette E, Dharmasiric S, Estelle M, Herrera-Estrell L (2008) Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell 20:3258–3272

    Article  Google Scholar 

  • Plaxton WC, Carswell MC (1999) Metabolic aspects of phosphate starvation in plants. In: Lerner HR (ed) Plant responses to environmental stresses: from phytohormones to genome reorganization. Dekker, New York, pp 349–372

    Google Scholar 

  • Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y et al (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767

    Article  CAS  PubMed  Google Scholar 

  • Raghothama KG (1999) Phosphate acquisition. Ann Rev Plant Physiol Plant Mol Biol 50:665–693

    Article  CAS  Google Scholar 

  • Rzewuski G, Cornell KA, Rooney L (2007) OsMTN encodes a 5′-methylthioadenosine nucleosidase that is up-regulated during submergence-induced ethylene synthesis in rice (Oryza sativa L.). J Exp Bot 58:1505–1514

    Article  CAS  PubMed  Google Scholar 

  • Stotz HU, Long SR (1999) Expression of the pea (Pisum sativum L.) α-tubulin gene TubA1 is correlated with cell division activity. Plant Mol Biol 41:601–614

    Article  CAS  PubMed  Google Scholar 

  • Subramanian B, Bansal VK, Kav NN (2005) Proteome-level investigation of Brassica carinata-derived resistance to Leptosphaeria maculans. J Agric Food Chem 53:313–324

    Article  CAS  PubMed  Google Scholar 

  • Tholl D (2006) Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol 9:297–304

    Article  CAS  PubMed  Google Scholar 

  • Torabi S, Wissuwa M, Heidari M, Naghavi MR, Gilany K, Hajirezaei MR (2009) A comparative proteome approach to decipher the mechanism of rice adaptation to phosphorous deficiency. Proteomics 9:159–170

    Article  CAS  PubMed  Google Scholar 

  • Tran HT, Plaxton WC (2008) Proteomic analysis of alterations in the secretome of Arabidopsis thaliana suspension cells subjected to nutritional phosphate deficiency. Proteomics 8:4317–4326

    Article  CAS  PubMed  Google Scholar 

  • Uhde-Stone C, Zinn KE, Ramirez-Yáñez M, Li A, Vance CP, Allan DL et al (2003) Nylon filter arrays reveal differential gene expression in proteoid roots of white lupin in response to phosphorus deficiency. Plant Physiol 131:1064–1079

    Article  CAS  PubMed  Google Scholar 

  • Vanderauwera S, Block MD, Steene NV, Cotte BV, Metzlaff M, Breusegem FV (2007) Silencing of poly(ADP-ribose) polymerase in plants alters abiotic stress signal transduction. Proc Natl Acad Sci USA 104:15150–15155

    Article  CAS  PubMed  Google Scholar 

  • Wang WX, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  PubMed  Google Scholar 

  • Wasaki J, Yonetani R, Kuroda S, Shinano T, Yazaki J, Fujii F, Shimbo K (2003) Transcriptomic analysis of metabolic changes by phosphorus stress in rice plant roots. Plant Cell Environ 26:1515–1523

    Article  CAS  Google Scholar 

  • Wu P, Ma L, Hou X, Wang M, Wu Y, Liu F, Deng XW (2003) Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiol 132:1260–1271

    Article  CAS  PubMed  Google Scholar 

  • Xiao X, Yang F, Zhang S, Korpelainen H, Li C (2009) Physiological and proteomic responses of two contrasting Populus cathayana populations to drought stress. Physiol Plant 136:150–168

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Yang Y (2008) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell 15:745–759

    Article  Google Scholar 

  • Yan XL, Liao H, Trull MC, Beebe SE, Lynch JP (2001) Induction of a major leaf acid phosphatase dose not confer adaptation to low P availability in common bean. Plant Physiol 125:1901–1911

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Ding G, Shi L, Feng J, Xu F, Meng J (2010) Quantitative trait loci for root morphology in response to low phosphorus stress in Brassica napus. Theor Appl Genet 121:181–193

    Article  CAS  PubMed  Google Scholar 

  • Zhang FS, Ma J, Cao YP (1997) Phosphorus deficiency enhances root exudation of low-molecular weight organic acids and utilization of sparingly soluble inorganic phosphates by radish (Raghanus sativus L.) and rape (Brassica napus L.) plants. Plant Soil 196:261–264

    Article  CAS  Google Scholar 

  • Zhang H, Huang Y, Ye X, Shi L, Xu F (2009) Genotypic differences in phosphorus acquisition and the rhizosphere properties of Brassica napus in response to low phosphorus stress. Plant Soil 320:91–102

    Article  CAS  Google Scholar 

  • Zhao CF, Wang JQ, Cao ML, Zhao K, Shao JM, Lei TT, Yin JN, Hill GG, Xu NZ, Liu SQ (2005) Proteomic changes in rice leaves during development of field-grown rice plants. Proteomics 5:961–972

    Article  CAS  PubMed  Google Scholar 

  • Zhou K, Yamagishi M, Osaki M, Masuda K (2008) Sugar signalling mediates cluster root formation and phosphorus starvation-induced gene expression in white lupin. J Exp Bot 59:2749–2756

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research was financially supported by Key Laboratory of Oil Crop Biology of the Ministry of Agriculture in China, Program of “100 Distinguished Young Scientists” in Chinese Academy of Sciences and the National Hi-Techn Research & Development Program (2006AA10A112). We thank Dr. Vanengam Achal in Thapah University, Patiala, India, for helpful proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengyi Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, Y., Sun, H., Xu, F. et al. Comparative proteome analysis of metabolic changes by low phosphorus stress in two Brassica napus genotypes. Planta 233, 523–537 (2011). https://doi.org/10.1007/s00425-010-1311-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-010-1311-x

Keywords

Navigation