Skip to main content
Log in

Nocturnal changes in leaf growth of Populus deltoides are controlled by cytoplasmic growth

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Growing leaves do not expand at a constant rate but exhibit pronounced diel growth rhythms. However, the mechanisms giving rise to distinct diel growth dynamics in different species are still largely unknown. As a first step towards identifying genes controlling rate and timing of leaf growth, we analysed the transcriptomes of rapidly expanding and fully expanded leaves of Populus deltoides Bartr. ex. Marsh at points of high and low expansion at night. Tissues with well defined temporal growth rates were harvested using an online growth-monitoring system based on a digital image sequence processing method developed for quantitative mapping of dicot leaf growth. Unlike plants studied previously, leaf growth in P. deltoides was characterised by lack of a base-tip gradient across the lamina, and by maximal and minimal growth at dusk and dawn, respectively. Microarray analysis revealed that the nocturnal decline in growth coincided with a concerted down-regulation of ribosomal protein genes, indicating deceleration of cytoplasmic growth. In a subsequent time-course experiment, Northern blotting and real-time RT-PCR confirmed that the ribosomal protein gene RPL12 and a cell-cycle gene H2B were down-regulated after midnight following a decrease in cellular carbohydrate concentrations. Thus, we propose that the spatio-temporal growth pattern in leaves of P. deltoides primarily arises from cytoplasmic growth whose activity increases from afternoon to midnight and thereafter decreases in this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

LPI:

Leaf plastochron index

M:

Mature leaves

RGR:

Relative growth rate

RP:

Ribosomal protein

Y:

Young leaves

References

  • Beemster GTS, De Veylder L, Vercruysse S, West G, Rombaut D, Van Hummelen P, Galichet A, Gruissem W, Inzé D, Vuylsteke M (2005) Genome-wide analysis of gene expression profiles associated with cell cycle transitions in growing organs of Arabidopsis. Plant Physiol 138:734–743

    Article  PubMed  CAS  Google Scholar 

  • Bertram L, Lercari B (1997) Kinetics of stem elongation in light-grown tomato plants. Responses to different photosynthetically active radiation levels by wild-type and aurea mutant plants. Photochem Photobiol 66:396–403

    Article  CAS  Google Scholar 

  • Bhalerao R, Nilsson O, Sandberg G (2003) Out of the woods: forest biotechnology enters the genomic era. Curr Opin Biotechnol 14:206–213

    Article  PubMed  CAS  Google Scholar 

  • Bigün J, Granlund GH (1987) Optimal orientation detection of linear symmetry. In: Proceedings of the 1st international conference on computer vision (ICCV). London, UK

  • Bolige A, Hagiwara S, Zhang Y, Goto K (2005) Circadian G2 arrest as related to circadian gating of cell proliferation growth in Euglena. Plant Cell Physiol 46:931–936

    Article  PubMed  CAS  Google Scholar 

  • Breyne P, Dreesen R, Vandepoele K, De Veylder L, Van Breusegem F, Callewaert L, Rombauts S, Raes J, Cannoot B, Engler G, Inzé D, Zabeau M (2002) Transcriptome analysis during cell division in plants. Proc Natl Acad Sci USA 99:14825–14830

    Article  PubMed  CAS  Google Scholar 

  • Britt AB (1996) DNA damage and repair in plants. Annu Rev Plant Physiol Plant Mol Biol 4:75–100

    Article  Google Scholar 

  • Brunner AM, Busov VB, Strauss SH (2004) Poplar genome sequence: functional genomics in an ecologically dominant plant species. Trends Plant Sci 9:49–56

    Article  PubMed  CAS  Google Scholar 

  • Bünning E (1952) Über den Tagesrhythmus der Mitosehäufigkeit in Pflanzen. Z Bot 40:193–199

    Google Scholar 

  • Chang SJ, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Reporter 11:113–116

    Article  CAS  Google Scholar 

  • Christ RA (1978) The elongation rate of wheat leaves. J Exp Bot 29:611–618

    Article  Google Scholar 

  • Cosgrove DJ (2000) Expansive growth of plant cell walls. Plant Physiol Biochem 38:109–124

    Article  PubMed  CAS  Google Scholar 

  • Cronk QCB (2005) Plant eco-devo: the potential of poplar as a model organism. New Phytol 166:39–48

    Article  PubMed  CAS  Google Scholar 

  • Cuadrado A, Navarrete MH, Canovas JL (1985) The effect of partial protein synthesis inhibition on cell proliferation in higher plants. J Cell Sci 76:97–104

    PubMed  CAS  Google Scholar 

  • Dale JE (1988) The control of leaf expansion. Ann Rev Plant Physiol Plant Mol Biol 39:267–295

    Article  Google Scholar 

  • den Boer BGW, Murray JAH (2000) Triggering the cell cycle in plants. Trends Cell Biol 10:245–250

    Article  Google Scholar 

  • Diaz E, Yang Y, Ferreira T, Loh K, Okazaki Y, Hayashizaki Y, Tessier-Lavigne M, Speed T, Ngai J (2003) Analysis of gene expression in the developing mouse retina. Proc Natl Acad Sci USA 100:5491–5496

    Article  PubMed  CAS  Google Scholar 

  • Dodd AN, Salathia N, Hall A, Kévei E, Tóth R, Nagy F, Hibberd JM, Millar AJ, Webb AAR (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309:630–633

    Article  PubMed  CAS  Google Scholar 

  • Donnelly PM, Bonetta D, Tsukaya H, Dengler RE, Dengler NG (1999) Cell cycling and cell enlargement in developing leaves of Arabidopsis. Dev Biol 215:407–419

    Article  PubMed  CAS  Google Scholar 

  • Edwards D (2003) Non-linear normalization and background correction in one-channel cDNA microarray studies. Bioinformatics 19:825–833

    Article  PubMed  CAS  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  PubMed  CAS  Google Scholar 

  • Erickson RO, Michelini FJ (1957) The plastochron index. Am J Bot 44:297–305

    Article  Google Scholar 

  • Goto K, Johnson CH (1995) Is the cell division cycle gated by a circadian clock? The case of Chlamydomonas reinhardtii. J Cell Biol 129:1061–1069

    Article  PubMed  CAS  Google Scholar 

  • Granier C, Tardieu F (1998) Spatial and temporal analyses of expansion and cell cycle in sunflower leaves. Plant Physiol 116:991–1001

    Article  PubMed  CAS  Google Scholar 

  • Harmer SL, Hogenesch JB, Straume M, Chang H-S, Han B, Zhu T, Wang X, Kreps JA, Kay SA (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290:2110–2113

    Article  PubMed  CAS  Google Scholar 

  • Hayama R, Coupland G (2003) Shedding light on the circadian clock and the photoperiodic control of flowering. Curr Opin Plant Biol 6:13–19

    Article  PubMed  CAS  Google Scholar 

  • Ito T, Kim G-T, Shinozaki K (2000) Disruption of an Arabidopsis cytoplasmic ribosomal protein S13-homologous gene by transposon-mediated mutagenesis causes aberrant growth and development. Plant J 22:257–264

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen P, Tyers M, Warner JR (2004) Forging the factory: ribosome synthesis and growth control in budding yeast. In: Hall MN, Raff M, Thomas G (eds) Cell growth: control of cell size. Cold Spring Harbor Laboratory Press, New York, pp 329–370

    Google Scholar 

  • Kohler A, Blaudez D, Chalot M, Martin F (2004) Cloning and expression of multiple metallothioneins from hybrid poplar. New Phytol 164:83–93

    Article  CAS  Google Scholar 

  • Krause GH, Gallé A, Gademann R, Winter K (2003) Capacity of protection against ultraviolet radiation in sun and shade leaves of tropical forest plants. Funct Plant Biol 30:533–542

    Article  CAS  Google Scholar 

  • Larson PR, Isebrands JG (1971) The plastochron index as applied to developmental studies of cottonwood. Can J For Res 1:1–11

    Article  Google Scholar 

  • Mayrhofer S, Heizmann U, Magel E, Eiblmeier M, Müller A, Rennenberg H, Hampp R, Schnitzler J-P, Kreuzwieser J (2004) Carbon balance in leaves of young poplar trees. Plant Biol 6:1–10

    Article  Google Scholar 

  • Menges M, Hennig L, Gruissem W, Murray JAH (2002) Cell cycle-regulated gene expression in Arabidopsis. J Biol Chem 277:41987–42002

    Article  PubMed  CAS  Google Scholar 

  • Nakazono M, Qiu F, Borsuk LA, Schnable PS (2003) Laser-capture microdissection, a tool for the global analysis of gene expression in specific plant cell types: identification of genes expressed differentially in epidermal cells or vascular tissues of maize. Plant Cell 15:583–596

    Article  PubMed  CAS  Google Scholar 

  • Nikaido SS, Johnson CH (2000) Daily and circadian variation in survival from ultraviolet radiation in Chlamydomonas reinhardtii. Photochem Photobiol 71:758–765

    Article  PubMed  CAS  Google Scholar 

  • Poethig RS, Sussex IM (1985) The cellular parameters of leaf development in tobacco: a clonal analysis. Planta 165:170–184

    Article  Google Scholar 

  • Popescu SC, Tumer NE (2004) Silencing of ribosomal protein L3 genes in N. tabacum reveals coordinate expression and significant alterations in plant growth, development and ribosome biogenesis. Plant J 39:29–44

    Article  PubMed  CAS  Google Scholar 

  • Roggatz U, McDonald AJS, Stadenberg I, Schurr U (1999) Effects of nitrogen deprivation on cell division and expansion in leaves of Ricinus communis L. Plant Cell Environ 22:81–89

    Article  Google Scholar 

  • Schaffer R, Landgraf J, Accerbi M, Simon V, Larson M, Wisman E (2001) Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis. Plant Cell 13:113–123

    Article  PubMed  CAS  Google Scholar 

  • Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carré IA, Coupland G (1998) The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 93:1219–1229

    Article  PubMed  CAS  Google Scholar 

  • Scharr H (2005) Optimal filters for extended optical flow. In: Proceedings of international workshop on complex motion. Günzburg, Germany, LNCS 3417

  • Schawalder SB, Kabani M, Howald I, Choudhury U, Werner M, Shore D (2004) Growth-regulated recruitment of the essential yeast ribosomal protein gene activator lfh1. Nature 432:1058–1061

    Article  PubMed  CAS  Google Scholar 

  • Schmundt D, Stitt M, Jähne B, Schurr U (1998) Quantitative analysis of the local rates of growth of dicot leaves at a high temporal and spatial resolution, using image sequence analysis. Plant J 16:505–514

    Article  Google Scholar 

  • Smith C, Rodríguez-Buey M, Karlsson J, Campbell MM (2004) The response of the poplar transcriptome to wounding and subsequent infection by a viral pathogen. New Phytol 164:123–136

    Article  CAS  Google Scholar 

  • Stahlberg R, Van Volkenburgh E (1999) The effect of light on membrane potential, apoplastic pH and cell expansion in leaves of Pisum sativum L. var. Argenteum. Planta 208:188–195

    Article  CAS  Google Scholar 

  • Stals H, Inzé D (2001) When plant cells decide to divide. Trends Plant Sci 6:359–364

    Article  PubMed  CAS  Google Scholar 

  • Stapleton AE, Walbot V (1994) Flavonoids can protect maize DNA from the induction of ultraviolet-radiation damage. Plant Physiol 105:881–889

    Article  PubMed  CAS  Google Scholar 

  • Sterky F, Bhalerao RR, Unneberg P, Segerman B, Nilsson P, Brunner AM, Charbonnel-Campaa L, Jonsson-Lindvall J, Tandre K, Strauss SH, Sundberg B, Gustafsson P, Uhlén M, Bhalerao RP, Nilsson O, Sandberg G, Karlsson J, Lundeberg J, Jansson S (2004) A Populus EST resource for plant functional genomics. Proc Natl Acad Sci USA 101:13951–13956

    Article  PubMed  Google Scholar 

  • Stiles KA, Van Volkenburgh E (2002) Light-regulated leaf expansion in two Populus species: dependence on developmentally controlled ion transport. J Exp Bot 53:1651–1657

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto-Shirasu K, Roberts K (2003) “Big it up”: endoreduplication and cell-size control in plants. Curr Opin Plant Biol 6:544–553

    Article  PubMed  CAS  Google Scholar 

  • Taylor G (2002) Populus: arabidopsis for forestry. Do we need a model tree? Ann Bot 90:681–689

    Article  PubMed  CAS  Google Scholar 

  • Trainotti L, Pavanello A, Casadoro G (2004) Differential expression of genes in apical and basal tissues of expanding tobacco leaves. Plant Sci 167:679–686

    Article  CAS  Google Scholar 

  • Van der Werf A (1996) Growth analysis and photoassimilate partitioning. In: Zamski E, Schaffer AA (eds) Photoassimilate distribution in plants and crops. Marcel Dekker, New York, pp 1–20

    Google Scholar 

  • Van Lijsebettens M, Vanderhaeghen R, De Block M, Bauw G, Villarroel R, Van Montagu M (1994) An S18 ribosomal protein gene copy at the Arabidopsis PFL locus affects plant development by its specific expression in meristems. EMBO J 13:3378–3388

    PubMed  Google Scholar 

  • Van Volkenburgh E, Taylor G (1996) Leaf growth physiology. In: Stettler RF, Bradshaw HDJr, Heilman PE, Hinckley TM (eds) Biology of populus. NRC Research Press, Ottawa, pp 283–299

    Google Scholar 

  • Walter A, Christ MM, Barron-Gafford GA, Grieve KA, Paige T, Murthy R, Rascher U (2005) The effect of elevated CO2 on diel leaf growth cycle, leaf carbohydrate content and canopy growth performance of Populus deltoides. Global Change Biol 11:1207–1219

    Article  Google Scholar 

  • Walter A, Schurr U (2005) Dynamics of leaf and root growth—endogenous control versus environmental impact. Ann Bot 95:891–900

    Article  PubMed  Google Scholar 

  • Warner JR (1999) The economics of ribosome biosynthesis in yeast. Trends Biochem Sci 24:437–440

    Article  PubMed  CAS  Google Scholar 

  • Weijers D, Franke-van Dijk M, Vencken R-J, Quint A, Hooykaas P, Offringa R (2001) An Arabidopsis minute-like phenotype caused by a semi-dominant mutation in a RIBOSOMAL PROTEIN S5 gene. Development 128:4289–4299

    PubMed  CAS  Google Scholar 

  • Wettenhall JM, Smyth GK (2004) LimmaGUI: a graphical user interface for linear modeling of microarray data. Bioinformatics 20:3705–3706

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Kind assistance by Ingela Sandström, Andreas Sjödin (UPSC, Umeå) and Volker Wendisch (FZJ, Jülich) for the microarray analysis, Katharina Klug and Kate Morrissey (FZJ, Jülich) for RNA analyses, and Maja Christ and Kerstin Nagel (FZJ, Jülich) for carbohydrate assay is greatly acknowledged. The microarray experiment at UPSC was supported by Forest Research Environment (FORE, Umeå), the European Community’s programme “Improving the Human Research Potential and the Socio-Economic Knowledge Base”, the “Project-based Personnel Exchange Programme” of Deutscher Akademischer Austauschdienst (DAAD), and by a grant from the Swedish Forestry and Agricultural Research Council to VH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shizue Matsubara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsubara, S., Hurry, V., Druart, N. et al. Nocturnal changes in leaf growth of Populus deltoides are controlled by cytoplasmic growth. Planta 223, 1315–1328 (2006). https://doi.org/10.1007/s00425-005-0181-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0181-0

Keywords

Navigation