Skip to main content

Advertisement

Log in

Endothelial dysfunction in diabetes: multiple targets for treatment

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Robert Furchgott’s discovery of the obligatory role that the endothelium plays in the regulation of vascular tone has proved to be a major advance in terms of our understanding of the cellular basis of diabetic vascular disease. Endothelial dysfunction, as defined by a reduction in the vasodilatation response to an endothelium-dependent vasodilator (such as acetylcholine) or to flow-mediated vasodilatation, is an early indicator for the development of the micro- and macroangipathy that is associated with diabetes. In diabetes, hyperglycaemia plays a key role in the initiation and development of endothelial dysfunction; however, the cellular mechanisms involved as well as the importance of dyslipidaemia and co-morbidities such as hypertension and obesity remain incompletely understood. In this review, we discuss the mechanisms whereby hyperglycaemia, oxidative stress and dyslipidaemia can alter endothelial function and highlight their effects on endothelial nitric oxide synthase (eNOS), the endothelium-dependent hyperpolarising factor (EDHF) pathway(s), as well as on the role of endothelium-derived contracting factors (EDCFs) and adipocyte-derived vasoactive factors such as adipose-derived relaxing factor (ADRF).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abdullaev IF, Bisaillon JM, Potier M, Gonzalez JC, Motiani RK, Trebak M (2008) Stim1 and Orai1 mediate CRAC currents and store-operated calcium entry important for endothelial cell proliferation. Circ Res 103:1289–1299

    Article  PubMed  CAS  Google Scholar 

  2. Aljofan M, Triggle CR, Ding H (2007) Oxidative stress and increased eNOS and NADPH oxidase expression in mouse microvessel endothelial cells. J Cell Physiol 212:682–689

    Article  PubMed  CAS  Google Scholar 

  3. Aljofan M, Ding H (2010) High glucose increases expression of cyclooxygenase-2, increases oxidative stress and decreases the generation of nitric oxide in mouse microvessel endothelial cells. J Cell Physiol 222:669–675

    PubMed  CAS  Google Scholar 

  4. Alp NJ, Channon KM (2004) Regulation of endothelial nitric oxide synthase by tetrahydrobiopterin in vascular disease. Arterioscler Thromb Vasc Biol 24:413–420

    Article  PubMed  CAS  Google Scholar 

  5. Alp NJ, McAteer MA, Khoo J, Choudhury RP, Channon KM (2004) Increased endothelial tetrahydrobiopterin synthesis by targeted transgenic GTP-cyclohydrolase I overexpression reduces endothelial dysfunction and atherosclerosis in ApoE-knockout mice. Arterioscler Thromb Vasc Biol 24:445–450

    Article  PubMed  CAS  Google Scholar 

  6. Anderson TJ, Uehata A, Gerhard MD, Meredith IT, Knab S, Delagrange D, Lieberman EH, Peter Ganz P, Creager MA, Yeung AC, Selwyn AP (1995) Close relation of endothelial function in the human coronary and peripheral circulations. J Am Coll Cardiol 26:1235–1241

    Article  PubMed  CAS  Google Scholar 

  7. Anderson TJ (1999) Assessment and treatment of endothelial dysfunction in humans. J Am Coll Cardiol 34:631–638

    Article  PubMed  CAS  Google Scholar 

  8. Andrews KL, Pannirselvam M, Anderson TJ, Jenkins AJ, Triggle CR, Hill MA (2005) The vascular endothelium in diabetes: a practical target for drug treatment? Expert Opin Ther Targets 9:101–117

    Article  PubMed  CAS  Google Scholar 

  9. Bagi Z, Toth E, Koller A, Kaley G (2004) Microvascular dysfunction after transient high glucose is caused by superoxide-dependent reduction in the bioavailability of NO and BH(4). Am J Physiol Heart Circ Physiol 287:H626–H633

    Article  PubMed  CAS  Google Scholar 

  10. Bakker W, Eringa EC, Sipkema P, van Hinsbergh VW (2009) Endothelial dysfunction and diabetes: roles of hyperglycemia, impaired insulin signaling and obesity. Cell Tissue Res 335:165–189

    Article  PubMed  CAS  Google Scholar 

  11. Beckman JA, Goldfine AB, Gordon MB, Garrett LA, Creager MA (2002) Inhibition of protein kinase Cbeta prevents impaired endothelium-dependent vasodilation caused by hyperglycemia in humans. Circ Res 90:107–111

    Article  PubMed  CAS  Google Scholar 

  12. Bishara N, Ding H (2010) Glucose enhances expression of TRPC and Ca entry in endothelial cells. Am J Physiol Heart Circ Physiol 298:H171–H178

    Article  PubMed  CAS  Google Scholar 

  13. Bohlen HG (2004) Mechanisms for early microvascular injury in obesity and type II diabetes. Curr Hypertens Rep 6:60–65

    Article  PubMed  Google Scholar 

  14. Böhm F, Ahlborg G, Pernow J (2002) Endothelin-1 inhibits endothelium-dependent vasodilatation in the human forearm: reversal by ETA receptor blockade in patients with atherosclerosis. Clin Sci (Lond) 102:321–327

    Article  Google Scholar 

  15. Boulanger C, Lüscher TF (1990) Release of endothelin from the porcine aorta. Inhibition by endothelium-derived nitric oxide. J Clin Invest 85:587–590

    Article  PubMed  CAS  Google Scholar 

  16. Brasacchio D, Okabe J, Tikellis C, Balcerczyk A, George P, Baker EK, Calkin AC, Brownlee M, Cooper ME, El-Osta A (2009) Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes 58:1229–1236

    Article  PubMed  CAS  Google Scholar 

  17. Bréchard S, Tschirhart EJ (2008) Regulation of superoxide production in neutrophils: role of calcium influx. J Leukoc Biol 84:1223–1237

    Article  PubMed  CAS  Google Scholar 

  18. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    Article  PubMed  CAS  Google Scholar 

  19. Burnham MP, Johnson IT, Weston AH (2006) Reduced Ca2+-dependent activation of large-conductance Ca2+-activated K+ channels from arteries of Type 2 diabetic Zucker diabetic fatty rats. Am J Physiol Heart Circ Physiol 290:H1520–H1527

    Article  PubMed  CAS  Google Scholar 

  20. Burnham MP, Johnson IT, Weston AH (2006) Impaired small-conductance Ca2+-activated K+ channel-dependent EDHF responses in Type II diabetic ZDF rats. Br J Pharmacol 148:434–441

    Article  PubMed  CAS  Google Scholar 

  21. Busse R, Edwards G, Félétou M, Fleming I, Vanhoutte PM, Weston AH (2002) EDHF: bringing the concepts together. Trends Pharmacol Sci 23:374–380

    Article  PubMed  CAS  Google Scholar 

  22. Cai S, Khoo J, Mussa S, Alp NJ, Channon KM (2005) Endothelial nitric oxide synthase dysfunction in diabetic mice: importance of tetrahydrobiopterin in eNOS dimerisation. Diabetologia 48:1933–1940

    Article  PubMed  CAS  Google Scholar 

  23. Campbell WB, Falck JR (2007) Arachidonic acid metabolites as endothelium-derived hyperpolarizing factors. Hypertension 49:590–596

    Article  PubMed  CAS  Google Scholar 

  24. Cao YX, Zheng JP, He JY, Li J, Xu CB, Edvinsson L (2005) Induces vasodilatation of rat mesenteric artery in vitro mainly by inhibiting receptor-mediated Ca(2+)-influx and Ca(2+)-release. Arch Pharm Res 28:709–715

    Article  PubMed  CAS  Google Scholar 

  25. Ceroni L, Ellis A, Wiehler WB, Jiang YF, Ding H, Triggle CR (2007) Calcium-activated potassium channel and connexin expression in small mesenteric arteries from eNOS-deficient (eNOS-/-) and eNOS-expressing (eNOS+/+) mice. Eur J Pharmacol 560:193–200

    Article  PubMed  CAS  Google Scholar 

  26. Chadjichristos CE, Scheckenbach KE, van Veen TA, Richani Sarieddine MZ, de Wit C, Yang Z, Roth I, Bacchetta M, Viswambharan H, Foglia B, Dudez T, van Kempen MJ, Coenjaerts FE, Miquerol L, Deutsch U, Jongsma HJ, Chanson M, Kwak BR (2009) Endothelial-specific deletion of connexin40 promotes atherosclerosis by Increasing CD73-dependent leukocyte adhesion. Circulation 2009 Dec 21. [Epub ahead of print]

  27. Chakrabarti S, Khan ZA, Cukiernik M, Fukuda G, Chen S, Mukherjee S (2002) Alteration of endothelins: a common pathogenetic mechanism in chronic diabetic complications. Int J Exp Diabetes Res 3:217–231

    Article  PubMed  Google Scholar 

  28. Channon KM (2004) Tetrahydrobiopterin: regulator of endothelial nitric oxide synthase in vascular disease. Trends Cardiovasc Med 14:323–327

    Article  PubMed  CAS  Google Scholar 

  29. Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH (2007) Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J Am Coll Cardiol 49:2379–2393

    Article  PubMed  CAS  Google Scholar 

  30. Chen YH, Lin SJ, Lin FY, Wu TC, Tsao CR, Huang PH, Liu PL, Chen YL, Chen JW (2007) High glucose impairs early and late endothelial progenitor cells by modifying nitric oxide-related but not oxidative stress-mediated mechanisms. Diabetes 56:1559–1568

    Article  PubMed  CAS  Google Scholar 

  31. Cheng ZJ, Jiang YF, Ding H, Severson D, Triggle CR (2007) Vascular dysfunction in type 2 diabetic TallyHo mice: role for an increase in the contribution of PGH2/TxA2 receptor activation and cytochrome p450 products. Can J Physiol Pharmacol 85:404–412

    Article  PubMed  CAS  Google Scholar 

  32. Cipolla MJ, Porter JM, Osol G (1997) High glucose concentrations dilate cerebral arteries and diminish myogenic tone through an endothelial mechanism. Stroke 28:405–410

    PubMed  CAS  Google Scholar 

  33. Constans J, Conri C (2006) Circulating markers of endothelial function in cardiovascular disease. Clin Chim Acta 368:33–47

    Article  PubMed  CAS  Google Scholar 

  34. Cosentino F, Eto M, De Paolis P, van der Loo B, Bachschmid M, Ullrich V, Kouroedov A, Delli Gatti C, Joch H, Volpe M, Luscher TF (2003) High glucose causes upregulation of cyclooxygenase-2 and alters prostanoid profile in human endothelial cells: role of protein kinase C and reactive oxygen species. Circulation 107:1017–1023

    Article  PubMed  CAS  Google Scholar 

  35. Cosentino F, Hürlimann D, Delli Gatti C, Chenevard R, Blau N, Alp NJ, Channon KM, Eto M, Lerch P, Enseleit F, Ruschitzka F, Volpe M, Lüscher TF, Noll G (2008) Chronic treatment with tetrahydrobiopterin reverses endothelial dysfunction and oxidative stress in hypercholesterolaemia. Heart 94:487–492

    Article  PubMed  CAS  Google Scholar 

  36. Crabtree MJ, Tatham AL, Hale AB, Alp NJ, Channon KM (2009) Critical role for tetrahydrobiopterin recycling by dihydrofolate reductase in regulation of endothelial nitric-oxide synthase coupling: relative importance of the de novo biopterin synthesis versus salvage pathways. J Biol Chem 284:28128–28136

    Article  PubMed  CAS  Google Scholar 

  37. Crane GJ, Gallagher N, Dora KA, Garland CJ (2003) Small- and intermediate-conductance calcium-activated K+ channels provide different facets of endothelium-dependent hyperpolarization in rat mesenteric artery. J Physiol 553:183–189

    Article  PubMed  CAS  Google Scholar 

  38. Cybulsky MI, Gimbrone MA Jr (1991) Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 251:788–791

    Article  PubMed  CAS  Google Scholar 

  39. De Bono JP, Channon KM (2007) Endothelial cell tetrahydrobiopterin: going with the flow. Circ Res 101:752–754

    Article  PubMed  CAS  Google Scholar 

  40. DIABETES CONTROL AND COMPLICATIONS TRIAL RESEARCH GROUP (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med (1993) 329:977–986

    Article  Google Scholar 

  41. De Vriese AS, Verbeuren TJ, Van de Voorde J, Lameire NH, Vanhoutte PM (2000) Endothelial dysfunction in diabetes. Br J Pharmacol 130:963–974

    Article  PubMed  Google Scholar 

  42. de Wit C (2010) Different pathways with distinct properties conduct dilations in the microcirculation in vivo. Cardiovasc Res 85:604–613

    Article  PubMed  CAS  Google Scholar 

  43. Ding Y, Vaziri ND, Coulson R, Kamanna VS, Roh DD (2000) Effects of simulated hyperglycemia, insulin, and glucagon on endothelial nitric oxide synthase expression. Am J Physiol Endocrinol Metab 279:E11–E17

    PubMed  CAS  Google Scholar 

  44. Ding H, Hashem M, Wiehler WB, Lau W, Martin J, Reid J, Triggle C (2005) Endothelial dysfunction in the streptozotocin-induced diabetic apoE-deficient mouse. Br J Pharmacol 146:1110–1118

    Article  PubMed  CAS  Google Scholar 

  45. Dora KA, Gallagher NT, McNeish A, Garland CJ (2008) Modulation of endothelial cell KCa3.1 channels during endothelium-derived hyperpolarizing factor signaling in mesenteric resistance arteries. Circ Res 102:1247–1255

    Article  PubMed  CAS  Google Scholar 

  46. Dora KA (2010) Coordination of vasomotor responses by the endothelium. Circ J 74:226–232

    Article  PubMed  CAS  Google Scholar 

  47. Du XL, Edelstein D, Dimmeler S, Ju Q, Sui C, Brownlee M (2001) Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Invest 108:1341–1348

    PubMed  CAS  Google Scholar 

  48. Duplain H, Burcelin R, Sartori C, Cook S, Egli M, Lepori M, Vollenweider P, Pedrazzini T, Nicod P, Thorens B, Scherrer U (2001) Insulin resistance, hyperlipidemia, and hypertension in mice lacking endothelial nitric oxide synthase. Circulation 104:342–345

    PubMed  CAS  Google Scholar 

  49. Dyer J, Daly K, Salmon KS, Arora DK, Kokrashvili Z, Margolskee RF, Shirazi-Beechey SP (2007) Intestinal glucose sensing and regulation of intestinal glucose absorption. Biochem Soc Trans 35:1191–1194

    Article  PubMed  CAS  Google Scholar 

  50. Elmi S, Sallam NA, Rahman MM, Teng X, Hunter AL, Moien-Afshari F, Khazaei M, Granville DJ, Laher I (2008) Sulfaphenazole treatment restores endothelium-dependent vasodilation in diabetic mice. Vascul Pharmacol 48:1–8

    Article  PubMed  CAS  Google Scholar 

  51. El-Osta A, Brasacchio D, Yao D, Pocai A, Jones PL, Roeder RG, Cooper ME, Brownlee M (2008) Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med 205:2409–2417

    Article  PubMed  CAS  Google Scholar 

  52. Federici M, Menghini R, Mauriello A, Hribal ML, Ferrelli F, Lauro D, Sbraccia P, Spagnoli LG, Sesti G, Lauro R (2002) Insulin-dependent activation of endothelial nitric oxide synthase is impaired by O-linked glycosylation modification of signaling proteins in human coronary endothelial cells. Circulation 106:466–472

    Article  PubMed  CAS  Google Scholar 

  53. Félétou M, Vanhoutte PM (2006) Endothelial dysfunction: a multifaceted disorder (The Wiggers Award Lecture). Am J Physiol Heart Circ Physiol 291:H985–H1002

    Article  PubMed  CAS  Google Scholar 

  54. Félétou M, Vanhoutte PM (2007) Endothelium-dependent hyperpolarizations: past beliefs and present facts. Ann Med 39:495–516

    Article  PubMed  CAS  Google Scholar 

  55. Félétou M, Vanhoutte PM (2009) EDHF: an update. Clin Sci (Lond) 117:139–155

    Article  CAS  Google Scholar 

  56. Fichtlscherer S, Dimmeler S, Breuer S, Busse R, Zeiher AM, Fleming I (2004) Inhibition of cytochrome P450 2C9 improves endothelium-dependent, nitric oxide-mediated vasodilatation in patients with coronary artery disease. Circulation 109:178–183

    Article  PubMed  CAS  Google Scholar 

  57. Freichel M, Suh SH, Pfeifer A, Schweig U, Trost C, Weissgerber P, Biel MM, Philipp S, Freise D, Droogmans G, Hofmann F, Flockerzi V, Nilius B (2001) Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4-/- mice. Nat Cell Biol 3:121–127

    Article  PubMed  CAS  Google Scholar 

  58. Fukao M, Hattori Y, Kanno M, Sakuma I, Kitabatake A (1997) Alterations in endothelium-dependent hyperpolarization and relaxation in mesenteric arteries from streptozotocin-induced diabetic rats. Br J Pharmacol 121:1383–1391

    Article  PubMed  CAS  Google Scholar 

  59. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    Article  PubMed  CAS  Google Scholar 

  60. Gao YJ (2007) Dual modulation of vascular function by perivascular adipose tissue and its potential correlation with adiposity/lipoatrophy-related vascular dysfunction. Curr Pharm Des 13:2185–2192

    Article  PubMed  CAS  Google Scholar 

  61. Gaudreault N, Scriven DR, Moore ED (2004) Characterisation of glucose transporters in the intact coronary artery endothelium in rats: GLUT-2 upregulated by long-term hyperglycaemia. Diabetologia 47:2081–2092

    Article  PubMed  CAS  Google Scholar 

  62. Gerstein HC, Miller ME, Byington RP, Goff DC Jr, Bigger JT, Buse JB, Cushman WC, Genuth S, Ismail-Beigi F, Grimm RH Jr, Probstfield JL, Simons-Morton DG, Friedewald WT (2008) Effects of intensive glucose lowering in type 2 diabetes. Action to control cardiovascular risk in diabetes study group. N Engl J Med 358:2545–2559

    Article  PubMed  CAS  Google Scholar 

  63. Goto K, Rummery NM, Grayson TH, Hill CE (2004) Attenuation of conducted vasodilatation in rat mesenteric arteries during hypertension: role of inwardly rectifying potassium channels. J Physiol 561:215–231

    Article  PubMed  CAS  Google Scholar 

  64. Graier WF, Wascher TC, Lackner L, Toplak H, Krejs GJ, Kukovetz WR (1993) Exposure to elevated D-glucose concentrations modulates vascular endothelial cell vasodilatory response. Diabetes 42:1497–1505

    Article  PubMed  CAS  Google Scholar 

  65. Grgic I, Kaistha BP, Hoyer J, Köhler R (2009) Endothelial Ca+-activated K+ channels in normal and impaired EDHF-dilator responses–relevance to cardiovascular pathologies and drug discovery. Br J Pharmacol 157:509–526

    Article  PubMed  CAS  Google Scholar 

  66. Griffith TM, Chaytor AT, Bakker LM, Edwards DH (2005) 5-Methyltetrahydrofolate and tetrahydrobiopterin can modulate electrotonically mediated endothelium-dependent vascular relaxation. Proc Natl Acad Sci U S A 102:7008–7013

    Article  PubMed  CAS  Google Scholar 

  67. Grigston JC, Osuna D, Scheible WR, Liu C, Stitt M, Jones AM (2008) D-Glucose sensing by a plasma membrane regulator of G signaling protein, AtRGS1. FEBS Lett 582:3577–3584

    Article  PubMed  CAS  Google Scholar 

  68. Grundy SM, Howard B, Smith S Jr, Eckel R, Redberg R, Bonow RO (2002) Prevention conference VI: diabetes and cardiovascular disease: executive summary: conference proceeding for healthcare professionals from a special writing group of the American heart association. Circulation 105:2231–2239

    Article  PubMed  Google Scholar 

  69. Guzik TJ, Marvar PJ, Czesnikiewicz-Guzik M, Korbut R (2007) Perivascular adipose tissue as a messenger of the brain-vessel axis: role in vascular inflammation and dysfunction. J Physiol Pharmacol 58:591–610

    PubMed  CAS  Google Scholar 

  70. Halcox JP, Narayanan S, Cramer-Joyce L, Mincemoyer R, Quyyumi AA (2001) Characterization of endothelium-derived hyperpolarizing factor in the human forearm microcirculation. Am J Physiol Heart Circ Physiol 280:H2470–H2477

    PubMed  CAS  Google Scholar 

  71. Halcox JP, Schenke WH, Zalos G, Mincemoyer R, Prasad A, Waclawiw MA, Nour KR, Quyyumi AA (2002) Prognostic value of coronary vascular endothelial dysfunction. Circulation 106:653–658

    Article  PubMed  Google Scholar 

  72. Hattori Y, Nakanishi N, Akimoto K, Yoshida M, Kasai K (2003) HMG-CoA reductase inhibitor increases GTP cyclohydrolase I mRNA and tetrahydrobiopterin levels in vascular endothelial cells. Arterioscler Vasc Biol 23:176–182

    Article  CAS  Google Scholar 

  73. Heitzer T, Krohn K, Albers S, Meinertz T (2000) Tetrahydrobioptern improves endothelium-dependent vasodilation by increasing nitric oxide activity in patients with type II diabetes meliitus. Diabetologia 43:1435–1438

    Article  PubMed  CAS  Google Scholar 

  74. Hilgers RH, Janssen GM, Fazzi GE, De Mey JG (2009) 24 hour exposure to altered blood flow modifies endothelial Ca2+-activated K+ channels in rat mesenteric arteries. J Pharmacol Exp Ther. 2009 E-Pub Dec 29

  75. Hill MA, Ege EA (1994) Active and passive mechanical properties of isolated arterioles from STZ-induced diabetic rats. Effect of aminoguanidine treatment. Diabetes 43:1450–1456

    Article  PubMed  CAS  Google Scholar 

  76. Hills CE, Bland R, Wheelans DC, Bennett J, Ronco PM, Squires PE (2006) Glucose-evoked alterations in connexin43-mediated cell-to-cell communication in human collecting duct: a possible role in diabetic nephropathy. Am J Physiol Renal Physiol 291:F1045–F1051

    Article  PubMed  CAS  Google Scholar 

  77. Hosoki R, Matsuki N, Kimura H (1997) The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun 237:527–531

    Article  PubMed  CAS  Google Scholar 

  78. Hou CJ, Tsai CH, Su CH, Wu YJ, Chen SJ, Chiu JJ, Shiao MS, Yeh HI (2008) Diabetes reduces aortic endothelial gap junctions in ApoE-deficient mice: simvastatin exacerbates the reduction. J Histochem Cytochem 56:745–752

    Article  PubMed  CAS  Google Scholar 

  79. Huang GN, Zeng W, Kim JY, Yuan JP, Han L, Muallem S, Worley PF (2006) STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels. Nat Cell Biol 8:1003–1010

    Article  PubMed  CAS  Google Scholar 

  80. Ihlemann N, Rask-Madsen C, Perner A, Dominguez H, Hermann T, Køber L, Torp-Pedersen C (2003) Tetrahydrobiopterin restores endothelial dysfunction induced by an oral glucose challenge in healthy subjects. Am J Physiol Heart Circ Physiol 285:H875–H882

    PubMed  CAS  Google Scholar 

  81. Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, Aoki T, Etoh T, Hashimoto T, Naruse M, Sano H, Utsumi H, Nawata H (2000) High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C–dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 49:1939–1945

    Article  PubMed  CAS  Google Scholar 

  82. Kansui Y, Garland CJ, Dora KA (2008) Enhanced spontaneous Ca2+ events in endothelial cells reflect signalling through myoendothelial gap junctions in pressurized mesenteric arteries. Cell Calcium 44:135–146

    Article  PubMed  CAS  Google Scholar 

  83. Katusic ZS, d'Uscio LV (2004) Tetrahydrobiopterin: mediator of endothelial protection. Arterioscler Thromb Vasc Biol 24:397–398

    Article  PubMed  CAS  Google Scholar 

  84. Kawano H, Motoyama T, Hirashima O, Hirai N, Miyao Y, Sakamoto T, Kugiyama K, Ogawa H, Yasue H (1999) Hyperglycemia rapidly suppresses flow-mediated endothelium-dependent vasodilation of brachial artery. J Am Coll Cardiol 34:146–154

    Article  PubMed  CAS  Google Scholar 

  85. Khatsenko O (1998) Interactions between nitric oxide and cytochrome P-450 in the liver. Biochemistry (Mosc) 63:833–839

    CAS  Google Scholar 

  86. Kinoshita H, Azma T, Nakahata K, Iranami H, Kimoto Y, Dojo M, Yuge O, Hatano Y (2004) Inhibitory effect of high concentration of glucose on relaxations to activation of ATP-sensitive K+ channels in human omental artery. Arterioscler Thromb Vasc Biol 24:2290–2295

    Article  PubMed  CAS  Google Scholar 

  87. Köhler R (2009) Single-nucleotide polymorphisms in vascular Ca(2+)-activated K (+)-channel genes and cardiovascular disease. Pflugers Arch. Dec 31. [Epub ahead of print]

  88. Krummen S, Falck JR, Thorin E. Two distinct pathways account for EDHF-dependent dilatation in the gracilis artery of dyslipidaemic hApoB+/+ mice. Br J Pharmacol 145:264-270

  89. Krummen S, Drouin A, Gendron M-E, Falck JR, Thorin E (2006) ROS-sensitive cytochrome P450 activity maintains endothelial dilatation in ageing but is transitory in dyslipidaemic mice. Br J Pharmacol 147:897–904

    Article  PubMed  CAS  Google Scholar 

  90. Kuboki K, Jiang ZY, Takahara N, Ha SW, Igarashi M, Yamauchi T, Feener EP, Herbert TP, Rhodes CJ, King GL (2000) Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo: a specific vascular action of insulin. Circulation 101:676–681

    PubMed  CAS  Google Scholar 

  91. Kumar B, Dreja K, SS SA, Cheong SZ, Xu P, Sukumar J, Naylor J, Forte A, Cipollaro M, McHugh D, Kingston PA, Heagerty AM, Munsch CM, Bergdahl A, Hultgårdh-Nilsson A, Gomez MF, Porter KE, Hellstrand P, Beech DJ (2006) Upregulated TRPC1 channel in vascular injury in vivo and its role in human neointimal hyperplasia. Circ Res 98:557–563

    Article  PubMed  CAS  Google Scholar 

  92. Kuroki T, Inoguchi T, Umeda F, Ueda F, Nawata H (1998) High glucose induces alteration of gap junction permeability and phosphorylation of connexin-43 in cultured aortic smooth muscle cells. Diabetes 47:931–963

    Article  PubMed  CAS  Google Scholar 

  93. Lafuente N, Matesanz N, Azcutia V, Romacho T, Nevado J, Rodríguez-Mañas L, Moncada S, Peiró C, Sánchez-Ferrer CF (2008) The deleterious effect of high concentrations of D-glucose requires pro-inflammatory preconditioning. J Hypertens 26:478–485

    Article  PubMed  CAS  Google Scholar 

  94. Lane N (2003) A unifying view of ageing and disease: the double-agent theory. J Theor Biol 225:531–540

    Article  PubMed  Google Scholar 

  95. Larsen BT, Gutterman DD, Sato A, Toyama K, Campbell WB, Zeldin DC, Manthati VL, Falck JR, Miura H (2008) Hydrogen peroxide inhibits cytochrome p450 epoxygenases: interaction between two endothelium-derived hyperpolarizing factors. Circ Res 102:59–67

    Article  PubMed  CAS  Google Scholar 

  96. Ledoux J, Taylor MS, Bonev AD, Hannah RM, Solodushko V, Shui B, Tallini Y, Kotlikoff MI, Nelson MT (2008) Functional architecture of inositol 1, 4, 5-trisphosphate signaling in restricted spaces of myoendothelial projections. Proc Natl Acad Sci U S A 105:9627–9632

    Article  PubMed  Google Scholar 

  97. Leung PC, Cheng KT, Liu C, Cheung WT, Kwan HY, Lau KL, Huang Y, Yao X (2006) Mechanism of non-capacitative Ca2+ influx in response to bradykinin in vascular endothelial cells. J Vasc Res 43:367–376

    Article  PubMed  CAS  Google Scholar 

  98. Li AF, Roy S (2009) High glucose-induced downregulation of connexin 43 expression promotes apoptosis in microvascular endothelial cells. Invest Ophthalmol Vis Sci 50:1400–1407

    Article  PubMed  Google Scholar 

  99. Li H, Chai Q, Gutterman DD, Liu Y (2003) Elevated glucose impairs cAMP-mediated dilation by reducing Kv channel activity in rat small coronary smooth muscle cells. Am J Physiol Heart Circ Physiol 285:H1213–H1219

    PubMed  CAS  Google Scholar 

  100. Li Y, Li Y, Feng Q, Arnold M, Peng T (2009) Calpain activation contributes to hyperglycaemia-induced apoptosis in cardiomyocytes. Cardiovasc Res 84:100–110

    Article  PubMed  CAS  Google Scholar 

  101. Li X, Bazer FW, Gao H, Jobgen W, Johnson GA, Li P, McKnight JR, Satterfield MC, Spencer TE, Wu G (2009) Amino acids and gaseous signaling. Amino Acids 37:65–78

    Article  PubMed  CAS  Google Scholar 

  102. Liu Y, Terata K, Rusch NJ, Gutterman DD (2001) High glucose impairs voltage-gated K(+) channel current in rat small coronary arteries. Circ Res 89:146–152

    Article  PubMed  CAS  Google Scholar 

  103. Lu T, He T, Katusic ZS, Lee HC (2006) Molecular mechanisms mediating inhibition of human large conductance Ca2+-activated K+ channels by high glucose. Circ Res 99:607–616

    Article  PubMed  CAS  Google Scholar 

  104. Luksha L, Agewall S, Kublickiene K (2009) Endothelium-derived hyperpolarizing factor in vascular physiology and cardiovascular disease. Atherosclerosis 202:330–344

    Article  PubMed  CAS  Google Scholar 

  105. MacKenzie A, Cooper EJ, Dowell FJ (2008) Differential effects of glucose on agonist-induced relaxations in human mesenteric and subcutaneous arteries. Br J Pharmacol 153:480–487

    Article  PubMed  CAS  Google Scholar 

  106. Makino A, Kamata K (2000) Time-course changes in plasma endothelin-1 and its effects on the mesenteric arterial bed in streptozotocin-induced diabetic rats. Diabetes Obes Metab 2:47–55

    Article  PubMed  CAS  Google Scholar 

  107. Makino A, Platoshyn O, Suarez J, Yuan JX, Dillmann WH (2008) Downregulation of connexin40 is associated with coronary endothelial cell dysfunction in streptozotocin-induced diabetic mice. Am J Physiol Cell Physiol 295:C221–C230

    Article  PubMed  CAS  Google Scholar 

  108. Marchesi C, Ebrahimian T, Angulo O, Paradis P, Schiffrin EL (2009) Endothelial nitric oxide synth ase uncoupling and perivascular adipose oxidative stress and inflammation contribute to vascular dysfunction in a rodent model of metabolic syndrome. Hypertension 54:1384–1392

    Article  PubMed  CAS  Google Scholar 

  109. McGahon MK, Dash DP, Arora A, Wall N, Dawicki J, Simpson DA, Scholfield CN, McGeown JG, Curtis TM (2007) Diabetes downregulates large-conductance Ca2+-activated potassium beta 1 channel subunit in retinal arteriolar smooth muscle. Circ Res 100:703–711

    Article  PubMed  CAS  Google Scholar 

  110. McGuire JJ, Ding H, Triggle CR (2001) Endothelium-derived relaxing factors: a focus on endothelium-derived hyperpolarizing factor(s). Can J Physiol Pharmacol 79:443–470

    Article  PubMed  CAS  Google Scholar 

  111. McLeod DS, Lefer DJ, Merges C, Lutty GA (1995) Enhanced expression of intracellular adhesion molecule-1 and P-selectin in the diabetic human retina and choroid. Am J Pathol 147:642–653

    PubMed  CAS  Google Scholar 

  112. McNeish AJ, Sandow SL, Neylon CB, Chen MX, Dora KA, Garland CJ (2006) Evidence for involvement of both IKCa and SKCa channels in hyperpolarizing responses of the rat middle cerebral artery. Stroke 37:1277–1282

    Article  PubMed  CAS  Google Scholar 

  113. Miao F, Gonzalo IG, Lanting L, Natarajan R (2004) In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions. J Biol Chem 279:18091–18097

    Article  PubMed  CAS  Google Scholar 

  114. Mitro N, Mak PA, Vargas L, Godio C, Hampton E, Molteni V, Kreusch A, Saez E (2007) The nuclear receptor LXR is a glucose sensor. Nature 445:219–223

    Article  PubMed  CAS  Google Scholar 

  115. Mokelke EA, Hu Q, Song M, Toro L, Reddy HK, Sturek M (2003) Altered functional coupling of coronary K+ channels in diabetic dyslipidemic pigs is prevented by exercise. J Appl Physiol 95:1179–1193

    PubMed  CAS  Google Scholar 

  116. Moore TM, Brough GH, Babal P, Kelly JJ, Li M, Stevens T (1998) Store-operated calcium entry promotes shape change in pulmonary endothelial cells expressing Trp1. Am J Physiol 275:L574–L582

    PubMed  CAS  Google Scholar 

  117. MRC/BHF Heart Protection Study (2002) Antioxidant vitamin supplementation in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 360:23–33

    Article  Google Scholar 

  118. Mulvany MJ, Aalkjaer C (1990) Structure and function of small arteries. Physiol Rev 70:921–961

    PubMed  CAS  Google Scholar 

  119. Muntau AC, Röschinger W, Habich M, Demmelmair H, Hoffmann B, Sommerhoff CP, Roscher AA (2002) Tetrahydrobiopterin as an alternative treatment for mild phenylketonuria. N Engl J Med 347:2122–2132

    Article  PubMed  CAS  Google Scholar 

  120. Nakagawa Y, Nagasawa M, Yamada S, Hara A, Mogami H, Nikolaev VO, Lohse MJ, Shigemura N, Ninomiya Y, Kojima I (2009) Sweet taste receptor expressed in pancreatic beta-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion. PLoS ONE 4:e5106

    Article  PubMed  CAS  Google Scholar 

  121. Nilius B, Viana F, Droogmans G (1997) Ion channels in vascular endothelium. Annu Rev Physiol 59:145–170

    Article  PubMed  CAS  Google Scholar 

  122. Ohanian J, Gatfield KM, Ward DT, Ohanian V (2005) Evidence for a functional calcium-sensing receptor that modulates myogenic tone in rat subcutaneous small arteries. Am J Physiol Heart Circ Physiol 288:H1756–H1762

    Article  PubMed  CAS  Google Scholar 

  123. Okon EB, Chung AW, Rauniyar P, Padilla E, Tejerina T, McManus BM, Luo H, van Breemen C (2005) Compromised arterial function in human type 2 diabetic patients. Diabetes 54:2415–2423

    Article  PubMed  CAS  Google Scholar 

  124. Ong HL, Cheng KT, Liu X, Bandyopadhyay BC, Paria BC, Soboloff J, Pani B, Gwack Y, Srikanth S, Singh BB, Gill DL, Ambudkar IS (2007) Dynamic assembly of TRPC1-STIM1-Orai1 ternary complex is involved in store-operated calcium influx. Evidence for similarities in store-operated and calcium release-activated calcium channel components. J Biol Chem 282:9105–9116

    Article  PubMed  CAS  Google Scholar 

  125. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    Article  PubMed  CAS  Google Scholar 

  126. Pannirselvam M, Verma S, Anderson TJ, Triggle CR (2002) Cellular basis of endothelial dysfunction in small mesenteric arteries from spontaneously diabetic (db/db -/-) mice: role of decreased tetrahydrobiopterin bioavailability. Br J Pharmacol 136:255–263

    Article  PubMed  CAS  Google Scholar 

  127. Pannirselvam M, Simon V, Verma S, Anderson T, Triggle CR (2003) Chronic oral supplementation with sepiapterin prevents endothelial dysfunction and oxidative stress in small mesenteric arteries from diabetic (db/db) mice. Br J Pharmacol 140:701–706

    Article  PubMed  CAS  Google Scholar 

  128. Pannirselvam M, Ding H, Anderson TJ, Triggle CR (2006) Pharmacological characteristics of endothelium-derived hyperpolarizing factor-mediated relaxation of small mesenteric arteries from db/db mice. Eur J Pharmacol 551:98–107

    Article  PubMed  CAS  Google Scholar 

  129. Parekh AB, Penner R (1997) Store depletion and calcium influx. Physiol Rev 77:901–930

    PubMed  CAS  Google Scholar 

  130. Park HS, Lee SM, Lee JH, Kim YS, Bae YS, Park JW (2001) Phosphorylation of the leucocyte NADPH oxidase subunit p47(phox) by casein kinase 2: conformation-dependent phosphorylation and modulation of oxidase activity. Biochem J 358:783–790

    Article  PubMed  CAS  Google Scholar 

  131. Patel A, MacMahon S, Chalmers J, Neal B, Billot L, Woodward M, Marre M, Cooper M, Glasziou P, Grobbee D, Hamet P, Harrap S, Heller S, Liu L, Mancia G, Mogensen CE, Pan C, Poulter N, Rodgers A, Williams B, Bompoint S, de Galan BE, Joshi R, Travert F (2008) Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. ADVANCE Collaborative Group, N Engl J Med 358:2560–25772

    CAS  Google Scholar 

  132. Pedersen SF, Owsianik G, Nilius B (2005) TRP channels: an overview. Cell Calcium 38:233–252

    Article  PubMed  CAS  Google Scholar 

  133. Rainbow RD, Hardy ME, Standen NB, Davies NW (2006) Glucose reduces endothelin inhibition of voltage-gated potassium channels in rat arterial smooth muscle cells. J Physiol 575:833–844

    Article  PubMed  CAS  Google Scholar 

  134. Rizzoni D, Porteri E, Guelfi D, Muiesan ML, Valentini U, Cimino A, Girelli A, Rodella L, Bianchi R, Sleiman I, Rosei EA (2001) Structural alterations in subcutaneous small arteries of normotensive and hypertensive patients with non-insulin-dependent diabetes mellitus. Circulation 103:1238–1244

    PubMed  CAS  Google Scholar 

  135. Rusch NJ (2009) BK channels in cardiovascular disease: a complex story of channel dysregulation. Am J Physiol Heart Circ Physiol 297:H1580–H1582

    Article  PubMed  CAS  Google Scholar 

  136. Saliez J, Bouzin C, Rath G, Ghisdal P, Desjardins F, Rezzani R, Rodella LF, Vriens J, Nilius B, Feron O, Balligand JL, Dessy C (2008) Role of caveolar compartmentation in endothelium-derived hyperpolarizing factor-mediated relaxation: Ca2+ signals and gap junction function are regulated by caveolin in endothelial cells. Circulation 117:1065–1074

    Article  PubMed  CAS  Google Scholar 

  137. Sandow SL, Neylon CB, Chen MX, Garland CJ (2006) Spatial separation of endothelial small- and intermediate-conductance calcium-activated potassium channels (K(Ca)) and connexins: possible relationship to vasodilator function? J Anat 209:689–698

    Article  PubMed  CAS  Google Scholar 

  138. Sandow SL, Haddock RE, Hill CE, Chadha PS, Kerr PM, Welsh DG, Plane F (2009) What's where and why at a vascular myoendothelial microdomain signalling complex. Clin Exp Pharmacol Physiol 36:67–76

    Article  PubMed  CAS  Google Scholar 

  139. Sato T, Haimovici R, Kao R, Li AF, Roy S (2002) Downregulation of connexin 43 expression by high glucose reduces gap junction activity in microvascular endothelial cells. Diabetes 51:1565–1571

    Article  PubMed  CAS  Google Scholar 

  140. Schäfer A, Alp NJ, Cai S, Lygate CA, Neubauer S, Eigenthaler M, Bauersachs J, Channon KM (2004) Reduced vascular NO bioavailability in diabetes increases platelet activation in vivo. Arterioscler Thromb Vasc Biol 24:1720–1726

    Article  PubMed  CAS  Google Scholar 

  141. Scherrer U, Randin D, Vollenweider P, Vollenweider L, Nicod P (1994) Nitric oxide release accounts for insulin's vascular effects in humans. J Clin Invest 94:2511–2515

    Article  PubMed  CAS  Google Scholar 

  142. Schmidt TS, Alp NJ (2007) Mechanisms for the role of tetrahydrobiopterin in endothelial function and vascular disease. Clin Sci (Lond) 113:47–63

    CAS  Google Scholar 

  143. Sheng JZ, Wang D, Braun AP (2005) DAF-FM (4-amino-5-methylamino-2', 7'-difluorofluorescein) diacetate detects impairment of agonist-stimulated nitric oxide synthesis by elevated glucose in human vascular endothelial cells: reversal by vitamin C and L-sepiapterin. J Pharmacol Exp Ther 315:931–940

    Article  PubMed  CAS  Google Scholar 

  144. Si H, Heyken WT, Wolfle SE, Tysiac M, Schubert R, Grgic I, Vilianovich L, Giebing G, Maier T, Gross V, Bader M, de Wit C, Hoyer J, Kohler R (2006) Impaired endothelium-derived hyperpolarizing factor-mediated dilations and increased blood pressure in mice deficient of the intermediate conductance Ca2+-activated K+ channel. Circ Res 99:537–544

    Article  PubMed  CAS  Google Scholar 

  145. Soltis EE, Cassis LA (1991) Influence of perivascular adipose tissue on rat aortic smooth muscle responsiveness. Clin Exp Hypertens 13:277–296

    Article  CAS  Google Scholar 

  146. Song P, Wu Y, Xu J, Xie Z, Dong Y, Zhang M, Zou MH (2007) Reactive nitrogen species induced by hyperglycemia suppresses Akt signaling and triggers apoptosis by upregulating phosphatase PTEN (phosphatase and tensin homologue deleted on chromosome 10) in an LKB1-dependent manner. Circulation 116:1585–1595

    Article  PubMed  CAS  Google Scholar 

  147. Stalker TJ, Gong Y, Scalia R (2005) The calcium-dependent protease calpain causes endothelial dysfunction in type 2 diabetes. Diabetes 54:1132–1140

    Article  PubMed  CAS  Google Scholar 

  148. Straub SV, Girouard H, Doetsch PE, Hannah RM, Wilkerson MK, Nelson MT (2009) Regulation of intracerebral arteriolar tone by K(v) channels: effects of glucose and PKC. Am J Physiol Cell Physiol 297:C788–C796

    Article  PubMed  CAS  Google Scholar 

  149. Stroes E, Kastelein J, Cosentino F, Erkelens W, Wever R, Koomans H, Lüscher T, Rabelink T (1997) Tetrahydrobiopterin restores endothelial function in hypercholesterolemia. J Clin Invest 99:41–46

    Article  PubMed  CAS  Google Scholar 

  150. Sugiyama T, Levy BD, Michel T (2009) Tetrahydrobiopterin recycling, a key determinant of endothelial nitric-oxide synthase-dependent signaling pathways in cultured vascular endothelial cells. J Biol Chem 284:12691–12700

    Article  PubMed  CAS  Google Scholar 

  151. Taddei S, Versari D, Cipriano A, Ghiadoni L, Galetta F, Franzoni F, Magagna A, Virdis A, Salvetti A (2006) Identification of a cytochrome P450 2C9-derived endothelium-derived hyperpolarizing factor in essential hypertensive patients. J Am Coll Cardiol 48:508–515

    Article  PubMed  CAS  Google Scholar 

  152. Takahashi K, Ghatei MA, Lam HC, O'Halloran DJ, Bloom SR (1990) Elevated plasma endothelin in patients with diabetes mellitus. Diabetologia 33:306–310

    Article  PubMed  CAS  Google Scholar 

  153. Tamareille S, Mignen O, Capiod T, Rucker-Martin C, Feuvray D (2006) High glucose-induced apoptosis through store-operated calcium entry and calcineurin in human umbilical vein endothelial cells. Cell Calcium 39:47–55

    PubMed  CAS  Google Scholar 

  154. Tanaka J, Qiang L, Banks AS, Welch CL, Matsumoto M, Kitamura T, Ido-Kitamura Y, DePinho RA, Accili D (2009) Foxo1 links hyperglycemia to LDL oxidation and endothelial nitric oxide synthase dysfunction in vascular endothelial cells. Diabetes 58:2344–2354

    Article  PubMed  CAS  Google Scholar 

  155. Taylor MS, Bonev AD, Gross TP, Eckman DM, Brayden JE, Bond CT, Adelman JP, Nelson MT (2003) Altered expression of small-conductance Ca2+-activated K+ (SK3) channels modulates arterial tone and blood pressure. Circ Res 93:124–131

    Article  PubMed  CAS  Google Scholar 

  156. Thorand B, Baumert J, Döring A, Schneider A, Chambless L, Löwel H, Kolb H, Koenig W (2006) Association of cardiovascular risk factors with markers of endothelial dysfunction in middle-aged men and women. Results from the MONICA/KORA Augsburg Study. Thromb Haemost 95:134–141

    PubMed  CAS  Google Scholar 

  157. Triggle CR, Howarth A, Cheng ZJ, Ding H (2005) Twenty-five years since the discovery of endothelium-derived relaxing factor (EDRF): does a dysfunctional endothelium contribute to the development of type 2 diabetes? Can J Physiol Pharmacol 83:681–700

    Article  PubMed  CAS  Google Scholar 

  158. Triggle CR (2007) The early effects of elevated glucose on endothelial function as a target in the treatment of type 2 diabetes. Drugs Today (Barc) 43:815–826

    Article  CAS  Google Scholar 

  159. Tsien RW, Tsien RY (1990) Calcium channels, stores, and oscillations. Annu Rev Cell Biol 6:715–760

    Article  PubMed  CAS  Google Scholar 

  160. Tsutsui M, Milstien S, Katusic ZS (1996) Effect of tetrahydrobiopterin on endothelial function in canine middle cerebral arteries. Circ Res 79:336–342

    PubMed  CAS  Google Scholar 

  161. UK PROSPECTIVE DIABETES STUDY (UKPDS) GROUP, UK Prospective Diabetes Study (UKPDS) (1991) Study design, progress and performance. Diabetologia 34:877–890

    Article  Google Scholar 

  162. van Breemen C, Poburko D, Okon EB (2006) TRP proteins: a new dimension in the treatment of occlusive vascular disease. Circ Res 98:446–447

    Article  PubMed  CAS  Google Scholar 

  163. Vanhoutte PM (1998) Endothelium and control of vascular function. State of the Art lecture. Hypertension 13:658–667

    Google Scholar 

  164. Vanhoutte PM, Tang EH (2008) Endothelium-dependent contractions: when a good guy turns bad! J Physiol 586:5295–5304

    Article  PubMed  CAS  Google Scholar 

  165. Verma S, Lovren F, Dumont AS, Mather KJ, Maitland A, Kieser TM, Triggle CR, Anderson TJ (2000) Tetrahydrobiopterin improves endothelial function in human saphenous veins. J Thorac Cardiovasc Surg 120:668–671

    Article  PubMed  CAS  Google Scholar 

  166. Verma S, Anderson TJ (2002) Fundamentals of endothelial function for the clinical cardiologist. Circulation 105:546–549

    Article  PubMed  CAS  Google Scholar 

  167. Verma S, Szmitko PE, Anderson TJ (2004) Endothelial function: ready for prime time? Can J Cardiol 20:1335–1339

    PubMed  Google Scholar 

  168. Vlassara H, Palace MR (2002) Diabetes and advanced glycation endproducts. J Intern Med 251:87–101

    Article  PubMed  CAS  Google Scholar 

  169. Waldron GJ, Ding H, Lovren F, Kubes P, Triggle CR (1999) Acetylcholine-induced relaxation of peripheral arteries isolated from mice lacking endothelial nitric oxide synthase. Br J Pharmacol 128:653–658

    Article  PubMed  CAS  Google Scholar 

  170. Wang R (2002) Two's company, three's a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J 16:1792–1798

    Article  PubMed  CAS  Google Scholar 

  171. Wang X, Loutzenhiser R (2002) Determinants of renal microvascular response to ACh: afferent and efferent arteriolar actions of EDHF. Am J Physiol Renal Physiol 282:F124–F132

    PubMed  CAS  Google Scholar 

  172. Wang X, Trottier G, Loutzenhiser R (2003) Determinants of renal afferent arteriolar actions of bradykinin: evidence that multiple pathways mediate responses attributed to EDHF. Am J Physiol Renal Physiol 285:F540–F549

    PubMed  Google Scholar 

  173. Weston AH, Absi M, Ward DT, Ohanian J, Dodd RH, Dauban P, Petrel C, Ruat M, Edwards G (2005) Evidence in favor of a calcium-sensing receptor in arterial endothelial cells: studies with calindol and Calhex 231. Circ Res 97:391–398

    Article  PubMed  CAS  Google Scholar 

  174. Widder JD, Chen W, Li L, Dikalov S, Thöny B, Hatakeyama K, Harrison DG (2007) Regulation of tetrahydrobiopterin biosynthesis by shear stress. Circ Res 101:830–838

    Article  PubMed  CAS  Google Scholar 

  175. Wong CW, Christen T, Roth I, Chadjichristos CE, Derouette JP, Foglia BF, Chanson M, Goodenough DA, Kwak BR (2006) Connexin37 protects against atherosclerosis by regulating monocyte adhesion. Nat Med 12:950–954

    Article  PubMed  CAS  Google Scholar 

  176. Worthley MI, Kanani RS, Sun YH, Sun Y, Goodhart DM, Curtis MJ, Anderson TJ (2007) Effects of tetrahydrobiopterin on coronary vascular reactivity in atherosclerotic human coronary arteries. Cardiovasc Res 76:539–546

    Article  PubMed  CAS  Google Scholar 

  177. Wuensch T, Thilo F, Krueger K, Scholze A, Ristow M, Tepel M (2010) High glucose-induced oxidative stress increases transient receptor potential (TRP) channel expression in human monocytes. Diabetes. 2010 Jan 12. [Epub ahead of print]

  178. Xu J, Wu Y, Song P, Zhang M, Wang S, Zou MH (2007) Proteasome-dependent degradation of guanosine 5'-triphosphate cyclohydrolase I causes tetrahydrobiopterin deficiency in diabetes mellitus. Circulation 116:944–953

    Article  PubMed  CAS  Google Scholar 

  179. Xu J, Zou MH (2009) Molecular insights and therapeutic targets for diabetic endothelial dysfunction. Circulation 120:1266–1286

    Article  PubMed  Google Scholar 

  180. Yeh HI, Lu CS, Wu YJ, Chen CC, Hong RC, Ko YS, Shiao MS, Severs NJ, Tsai CH (2003) Reduced expression of endothelial connexin37 and connexin40 in hyperlipidemic mice: recovery of connexin37 after 7-day simvastatin treatment. Arterioscler Thromb Vasc Biol 23:1391–1397

    Article  PubMed  CAS  Google Scholar 

  181. Young EJ, Hill MA, Wiehler WB, Triggle CR, Reid JJ (2008) Reduced EDHF responses and connexin activity in mesenteric arteries from the insulin-resistant obese Zucker rat. Diabetologia 51:872–881

    Article  PubMed  CAS  Google Scholar 

  182. Yusuf M, Kwong Huat BT, Hsu A, Whiteman M, Bhatia M, Moore PK (2005) Streptozotocin-induced diabetes in the rat is associated with enhanced tissue hydrogen sulfide biosynthesis. Biochem Biophys Res Commun 333:1146–1152

    Article  PubMed  CAS  Google Scholar 

  183. Zimlichman R, Zaidel L, Nofech-Mozes S, Shkedy A, Matas Z, Shahar C, Eliahou HE (1997) Hyperinsulinemia induces myocardial infarctions and arteriolar medial hypertrophy in spontaneously hypertensive rats. Am J Hypertens 10:646–653

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris R. Triggle.

Additional information

Hong Ding and Chris R. Triggle contributed equally to this manuscript.

The authors are supported by a research grant from the Qatar Foundation National Priorities Research Program # 08 165-3-054

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, H., Triggle, C.R. Endothelial dysfunction in diabetes: multiple targets for treatment. Pflugers Arch - Eur J Physiol 459, 977–994 (2010). https://doi.org/10.1007/s00424-010-0807-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-010-0807-3

Keywords

Navigation