Skip to main content
Log in

Epoxyeicosatrienoic acids and endothelium-dependent responses

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Epoxyeicosatrienoic acids (EETs) are cytochrome P450 metabolites of arachidonic acid that are produced by the vascular endothelium in response to agonists such as bradykinin and acetylcholine or physical stimuli such as shear stress or cyclic stretch. In the vasculature, the EETs have biological actions that are involved in the regulation of vascular tone, hemostasis, and inflammation. In preconstricted arteries in vitro, EETs activate calcium-activated potassium channels on vascular smooth muscle and the endothelium causing membrane hyperpolarization and relaxation. These effects are observed in a variety of arteries from experimental animals and humans; however, this is not a universal finding in all arteries. The mechanism of EET action may vary. In some arteries, EETs are released from the endothelium and are transferred to the smooth muscle where they cause potassium channel activation, hyperpolarization, and relaxation through a guanine nucleotide binding protein-coupled mechanism or transient receptor potential (TRP) channel activation. In other arteries, EETs activate TRP channels on the endothelium to cause endothelial hyperpolarization that is transferred to the smooth muscle by gap junctions or potassium ion. Some arteries use a combination of mechanisms. Acetylcholine and bradykinin increase blood flow in dogs and humans that is inhibited by potassium channel blockers and cytochrome P450 inhibitors. Thus, the EETs are endothelium-derived hyperpolarizing factors mediating a portion of the relaxations to acetylcholine, bradykinin, shear stress, and cyclic stretch and regulate vascular tone in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Furchgott RF, Vanhoutte PM (1989) Endothelium-derived relaxing and contracting factors. FASEB J 3:2007–2018

    PubMed  CAS  Google Scholar 

  2. Furchgott RF, Zawadzki JW (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    Article  PubMed  CAS  Google Scholar 

  3. Cohen RA, Vanhoutte PM (1995) Endothelium-dependent hyperpolarization: beyond nitric oxide and cyclic GMP. Circulation 92:3337–3349

    PubMed  CAS  Google Scholar 

  4. Fleming I, Busse R (2006) Endothelium-derived epoxyeicosatrienoic acids and vascular function. Hypertension 47:629–633

    Article  PubMed  CAS  Google Scholar 

  5. Feletou M, Vanhoutte PM (2006) Endothelium-derived hyperpolaizing factor. Where are we now? Arterioscler Thromb Vasc Biol 26:1215–1225

    Article  PubMed  CAS  Google Scholar 

  6. Rosolowsky M, Campbell WB (1993) Role of PGI2 and EETs in the relaxation of bovine coronary arteries to arachidonic acid. Am J Physiol 264:H327–H335

    PubMed  CAS  Google Scholar 

  7. Rosolowsky M, Campbell WB (1996) Synthesis of hydroxyeicosatetraenoic acids (HETEs) and epoxyeicosatrienoic acids (EETs) by cultured bovine coronary artery endothelial cells. Biochim Biophys Acta 1299:267–277

    PubMed  Google Scholar 

  8. Campbell WB, Falck JR (2007) Arachidonic acid metabolites as endothelium-derived hyperpolarizing factors. Hypertension 49:590–596

    Article  PubMed  CAS  Google Scholar 

  9. Chawengsub Y, Gauthier KM, Campbell WB (2009) Role of arachidonic acid lipoxygenase metabolites in the regulation of vascular tone. Am J Physiol 297:H495–H507

    CAS  Google Scholar 

  10. Zygmunt PM, Edwards G, Weston AH, Davis SC, Hogestatt ED (1996) Effects of cytochrome P450 inhibitors on EDHF-mediated relaxation in the rat hepatic artery. Brit J Pharmacol 118:1147–1152

    CAS  Google Scholar 

  11. Fukao M, Hattori Y, Kanno M, Sakuma I, Kitabatake A (1997) Evidence against a role of cytochrome P450-derived arachidonic acid metabolites in endothelium-dependent hyperpolarization by acetylcholine in rat isolated mesenteric artery. Brit J Pharmacol 120:439–446

    Article  CAS  Google Scholar 

  12. Edwards G, Dora KA, Gardener MJ, Garland CJ, Weston AH (1998) K is an endothelium-derived hyperpolarizing factor in rat arteries. Nature 396:269–272

    Article  PubMed  CAS  Google Scholar 

  13. Matoba T, Shimokawa H, Nakashima M, Hirakawa Y, Mukai Y, Hirano K, Kandaide H, Takeshita A (2000) Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in mice. J Clin Invest 106:1521–1530

    Article  PubMed  CAS  Google Scholar 

  14. Chauhan SD, Nilsson H, Ahluwalia A, Hobbs AJ (2003) Release of C-type natriuretic peptide accounts for the biological activity of endothelium-derived hyperpolarizing factor. Proc Natl Acad Sci USA 100:1426–1431

    Article  PubMed  CAS  Google Scholar 

  15. Batenburg WW, Garrelds IM, van Kats JP, Saxena PR, Danser AHJ (2004) Mediators of bradykinin-induced vasorelaxation in human coronary microarteries. Hypertension 43:488–492

    Article  PubMed  CAS  Google Scholar 

  16. Capdevila J, Chacos N, Werringloer J, Prough RA, Estabrook RW (1981) Liver microsomal cytochrome P450 and the oxidative metabolism of archidonic acid. Proc Natl Acad Sci USA 78:5362–5366

    Article  PubMed  CAS  Google Scholar 

  17. Zeldin DC (2001) Epoxygenase pathways of arachidonic acid metabolism. J Biol Chem 276:36059–36062

    Article  PubMed  CAS  Google Scholar 

  18. Lin JH-C, Kobari Y, Stemerman MB, Pritchard KA (1996) Human umbilical vein endothelial cells express P450 2C8 mRNA: cloning of endothelial P450 epoxygenase. Endothelium 4:219–229

    Article  CAS  Google Scholar 

  19. Node K, Huo Y, Ruan X, Yang B, Spiecker M, Ley K, Zeldin D, Liao J (1999) Anti-inflammatory properties of cytochrome P450 epoxygenase-derived eicosanoids. Science 285:1276–1279

    Article  PubMed  CAS  Google Scholar 

  20. Zeldin DC, Dubois RN, Falck JR, Capdevila JH (1995) Molecular cloning, expression and characterization of an endogenous human cytochrome P450 arachidonic acid epoxygenase isoform. Arch Biochem Biophys 322:7686

    Article  Google Scholar 

  21. Wu S, Moomaw CR, Tomer KB, Falck JR, Zeldin DC (1996) Molecular cloning and expression of CYP2J2, a human cytochrome P450 arachidonic acid epoxygenase highly expressed in heart. J Biol Chem 271:3460–3468

    Article  PubMed  CAS  Google Scholar 

  22. Campbell WB, Gebremedhin D, Pratt PF, Harder DR (1996) Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors. Circ Res 78:415–423

    PubMed  CAS  Google Scholar 

  23. Nithipatikom K, Pratt PF, Campbell WB (2000) Determination of EETs using microbore liquid chromatography with fluorescence detection. Am J Physiol 279:H857–H862

    CAS  Google Scholar 

  24. Fissllthaler B, Popp R, Michaelis UR, Kiss L, Fleming I, Busse R (2001) Cyclic stretch enhances the expression and activity of coronary endothelium-derived hyperpolarizing factor synthase. Hypertension 38:1427–1432

    Article  Google Scholar 

  25. Huang A, Sun D, Jacobson A, Carroll MA, Falck JR, Kaley G (2005) Epoxyeicosatrienoic acids are released to mediate shear stress-dependent hyperpolarization of arteriolar smooth muscle. Circ Res 96:376–383

    Article  PubMed  CAS  Google Scholar 

  26. Gauthier KM, Edwards EM, Falck JR, Reddy DS, Campbell WB (2005) 14, 15-Epoxyeicosatrienoic acid represents a transferable endothelium-dependent relaxing factor in bovine coronary arteries. Hypertension 45:666–671

    Article  PubMed  CAS  Google Scholar 

  27. Fisslthaler B, Popp R, Kiss L, Potente M, Harder DR, Fleming I, Busse R (1999) Cytochrome P450 2C is an EDHF synthase in coronary arteries. Nature 401:493–497

    Article  PubMed  CAS  Google Scholar 

  28. Bolz S-S, Fissllthaler B, Pieperhoff S, De Wit C, Fleming I, Busse R, Pohl U (2000) Antisense oligonucleotides against cytochrome P450 2C8 attenuates EDHF-mediated Ca2+ changes and dilation in isolated resistance arteries. FASEB J 14:255–260

    PubMed  CAS  Google Scholar 

  29. Campbell WB, Holmes BB, Falck JR, Capdevila JH, Gauthier KM (2006) Adenoviral expression of cytochrome P450 epoxygenase in coronary smooth muscle cells: regulation of potassium channels by endogenous 14(S), 15(R)-EET. Am J Physiol 290:H64–H71

    CAS  Google Scholar 

  30. Spector AA, Fang X, Snyder GD, Weintraub NL (2004) Epoxyeicosatrienoic acids (EETs): metabolism and biochemical function. Prog Lipid Res 43:55–90

    Article  PubMed  CAS  Google Scholar 

  31. Spector AA, Norris AW (2007) Action of epoxyeicosatrienoic acids on cellular function. Am J Physiol 292:C996–C1012

    Article  CAS  Google Scholar 

  32. Campbell WB, Deeter C, Gauthier KM, Ingraham RH, Falck JR, Li P-L (2002) 14, 15-Dihydroxyeicosatrienoic acid relaxes bovine coronary arteries by activation of KCa channels. Am J Physiol 282:H1656–H1664

    CAS  Google Scholar 

  33. Kerseru B, Barbosa-Sicard E, Popp R, Fissllthaler B, Dietrich A, Gudermann T, Hammock BD, Falck JR, Weissmannn N, Busse R, Fleming I (2008) Epoxyeicosatrienoic acids and the soluble epoxide hydrolase are determinants of pulmonary artery pressure and the acute hypoxic pulmonary vasoconstriction response. FASEB J 22:4306–4315

    Article  CAS  Google Scholar 

  34. Kerseru B, Barbosa-Sicard E, Schermuly RT, Tanaka H, Hammock BD, Weissman M, Fissllthaler B, Fleming I (2010) Hypoxia-induced pulmonary hypertension: comparison of soluble epoxide hydrolase deletion versus inhibiton. Cardiovas Res 85:232–240

    Article  CAS  Google Scholar 

  35. Pokreisz P, Fleming I, Kiss L, Barbosa-Sicard E, Fissllthaler B, Falck JR, Hammock BD, Kim I-H, Szelid Z, Vermeersch P, Gillijns H, Pellens M, Grimminger F, van Zonneveld AJ, Collen D, Busse R, Janssens S (2006) Cytochrome P450 epoxygenase gene function in hypoxic pulmonary vasoconstriction and pulmonary vascular remodeling. Hypertension 47:762–770

    Article  PubMed  CAS  Google Scholar 

  36. Ai D, Guo D, Tanake H, Wang N, Tang C, Hammock BD, Shyy JY-J, Zhu Y (2007) Angiotensin II up-regulates soluble epoxide hydrolase in vascular endothelium in vitro and in vivo. Proc Nat Acad Sci USA 104:9018–9023

    Article  PubMed  CAS  Google Scholar 

  37. Imig JD, Hammock BD (2009) Soluble epoxide hydrolase as a therapeutic target for cardiovascular diseases. Nature Rev Drug Discov 8:794–805

    Article  CAS  Google Scholar 

  38. Jung O, Brandes RP, Kim IH, Schweda F, Schmidt R, Hammock BD, Fleming I (2005) Soluble epoxide hydrolase is a main effector of angiotensin II-induced hypertension. Hypertension 45:759–765

    Article  PubMed  CAS  Google Scholar 

  39. Fife KL, Liu Y, Schmelzer KR, Tsai H-J, Kim I-H, Morisseau C, Hammock BD, Kroetz DL (2008) Inhibition of soluble epoxide hydrolase does not protect against endotoxin-mediated hepatic inflammation. J Pharmacol Exp Ther 327:707–715

    Article  PubMed  CAS  Google Scholar 

  40. Barbosa-Sicard E, Fromel T, Kerseru B, Brandes RP, Morisseau C, Hammock BD, Braun T, Kruger M, Fleming I (2009) Inhibition of the soluble epoxide hydrolase by tyrosine nitration. J Biol Chem 284:28156–28163

    Article  PubMed  CAS  Google Scholar 

  41. Popp R, Fleming I, Busse R (1998) Pulsatile stretch in coronary arteries elicits release of endothelium-derived hyperpolarizing factor: a modulator of arterial compliance. Circ Res 82:696–703

    PubMed  CAS  Google Scholar 

  42. Archer SL, Gragasin FS, Wu X, Wang S, McMurtry S, Kim DH, Platonov M, Koshal A, Hasimoto K, Campbell WB, Falck JR, Michelakis ED (2003) Endothelium-derived hyperpolarizing factor in human internal mammary artery is 11, 12-epoxyeicosatrienoic acid and causes relaxation by activating smooth muscle BKca channels. Circulation 107:769–776

    Article  PubMed  CAS  Google Scholar 

  43. Coats P, Johnston F, MacDonald J, McMurray JJV, Hillier C (2001) Endothelium-derived hyperpolarizing factor: identification and mechanism of action in human subcutaenous resistance arteries. Circulation 103:1702–1708

    PubMed  CAS  Google Scholar 

  44. Miura H, Wachtel RE, Liu Y, Loberiza FR Jr, Saito T, Miura M, Gutterman DD (2001) Flow-induced dilation of human coronary arterioles: important role of Ca2+-activated K+ channels. Circulation 103:1992–1998

    PubMed  CAS  Google Scholar 

  45. Hecker M, Bara AT, Bauersachs J, Busse R (1994) Characterization of endothelium-derived hyperpolarizing factor as a cytochrome P450-derived arachidonic acid metabolite in mammals. J Physiol 481:407–414

    PubMed  CAS  Google Scholar 

  46. Busse R, Edwards G, Feletou M, Fleming I, Vanhoutte PM, Weston AH (2002) EDHF: bringing the concepts together. TiPS 23:374–380

    PubMed  CAS  Google Scholar 

  47. McSherry IN, Sandow SL, Campbell WB, Falck JR, Hill MA, Dora KA (2006) A role for heterocellular coupling and EETs in dilation of rat cremaster arteries. Microcirculation 13:119–130

    Article  PubMed  CAS  Google Scholar 

  48. Weston AH, Feletou M, Vanhoutte PM, Falck JR, Campbell WB, Edwards G (2005) Bradykinin-induced, endothelium-dependent responses in porcine coronary arteries: involvement of potassium channel activation and epoxyeicosatrienoic acids. Brit J Pharmacol 145:775–784

    Article  CAS  Google Scholar 

  49. Earley S, Pauyo T, Drapp R, Tavares MJ, Liedtke W, Brayden JE (2009) TRPV4-dependent dilation of peripheral resistance arteries influences arterial pressure. Am J Physiol 297:H1096–H1102

    CAS  Google Scholar 

  50. Gauthier KM, Deeter C, Krishna UM, Reddy YK, Bondlela M, Falck JR, Campbell WB (2002) 14, 15-Epoxyeicosa-5(Z)-enoic acid: a selective epoxyeicosatrienoic acid antagonist that inhibits endothelium-dependent hyperpolarization and relaxation in coronary arteries. Circ Res 90:1028–1036

    Article  PubMed  CAS  Google Scholar 

  51. Campbell WB, Harder DR (1999) Endothelium-derived hyperpolarizing factors and vascular cytochrome P450 metabolites of arachidonic acid in the regulation of tone. Circ Res 84:484–488

    PubMed  CAS  Google Scholar 

  52. Pratt PF, Li P, Hillard CJ, Kurian J, Campbell WB (2001) Endothelium-independent, ouabain-sensitive relaxation of bovine coronary arteries by EETs. Am J Physiol 280:H1113–H1121

    CAS  Google Scholar 

  53. Gebremedhin D, Ma Y-H, Falck JR, Roman RJ, VanRollins M, Harder DR (1992) Mechanism of action of cerebral epoxyeicosatrienoic acids on cerebral arterial smooth muscle. Am J Physiol 263:H519–H525

    PubMed  CAS  Google Scholar 

  54. Li P-L, Campbell WB (1997) Epoxyeicosatrienoic acids activate potassium channels in coronary smooth muscle through guanine nucleotide binding protein. Circ Res 80:877–884

    PubMed  CAS  Google Scholar 

  55. Popp R, Bauersachs J, Hecker M, Fleming I, Busse R (1996) A transferable, beta-naphthoflavone-inducible, hyperpolarizing factor is synthesized by native and cultured porcine coronary endothelial cells. J Physiol 497:699–709

    PubMed  CAS  Google Scholar 

  56. Gebremedhin D, Harder DR, Pratt PF, Campbell WB (1998) Bioassay of an endothelium-derived hyperpolarizing factor from bovine coronary arteries: role of a cytochrome P450 metabolite. J Vasc Res 35:274–284

    Article  PubMed  CAS  Google Scholar 

  57. Burnham MP, Bychkov R, Feletou M, Richards GR, Vanhoutte PM, Weston AH, Edwards G (2002) Characterization of an apamn-sensitive small-conductance Ca2+-activated K+ channel in porcine coronary artery endothelium: relevance to EDHF. Brit J Pharmacol 135:1133–1143

    Article  CAS  Google Scholar 

  58. Bychkov R, Burnham MP, Richards GR, Edwards G, Weston AH, Feletou M, Vanhoutte PM (2002) Characterization of a charybdotoxin-sensitive intermediate conductance Ca2+-activated K+ channel in porcine coronary endothelium: relevance to EDHF. Brit J Pharmacol 137:1346–1354

    Article  CAS  Google Scholar 

  59. Chaytor AT, Martin PEM, Edwards DH, Griffith TM (2001) Gap junctional communication underpins EDHF-type relaxations evoked by acetylcholine in the rat hepatic artery. Am J Physiol 280:H2441–H2450

    CAS  Google Scholar 

  60. Sandow SL, Hill CE (2000) Incidence of myoendothelial gap junctions in the proximal and distal mesenteric arteries of the rat is suggestive of a role in endothelium-derived hyperpolarizing factor-mediated responses. Circ Res 86:341–346

    PubMed  CAS  Google Scholar 

  61. Popp R, Brandes RP, Ott G, Busse R, Fleming I (2002) Dynamic modulation of interendothelial gap junctional communication by 11,12-epoxyeicosatrienoic acid. Circ Res 90:800–806

    Article  PubMed  CAS  Google Scholar 

  62. Fleming I, Rueben A, Popp R, Fissllthaler B, Schrodt S, Sander A, Haendeler J, Falck JR, Morisseau C, Hammock BD, Busse R (2007) Epoxyeicosatrienoic acids regulate Trp-channel-dependent Ca signaling and hyperpolariztion in endothelial cells. Arterio Thromb Vasc Biol 27:2612–2618

    Article  CAS  Google Scholar 

  63. Vriens J, Owsianik G, Fissllthaler B, Suzuki M, Janssens A, Voets T, Morisseau C, Hammock BD, Fleming I, Busse R, Nilius B (2005) Modulation of the Ca permeable cation channel TRPV4 by cytochrome P450 epoxygenases in vascular endothelium. Circ Res 97:908–915

    Article  PubMed  CAS  Google Scholar 

  64. Petersson J, Zygmunt PM, Jonsson P, Hogestatt ED (1998) Characterization of endothelium-dependent relaxations in guinea pig basilar ratery-effect of hypoxia and role of cytochrome P450 monooxygenase. J Vas Res 35:285–294

    Article  CAS  Google Scholar 

  65. Chataigneau T, Feletou M, Duhault J, Vanhoutte PM (1998) Epoxyeicosatrienoic acids, potassium channel blockers and endothelium-dependent hyperpolarizations in the guinea pig carotid artery. Brit J Pharmacol 123:574–580

    Article  CAS  Google Scholar 

  66. Larsen BT, Campbell WB, Gutterman DD (2007) Beyond vasodilation: non-vasomotor roles of epoxyeicosatrienoic acids in the cardiovascular system. TIPS 28:32–38

    PubMed  CAS  Google Scholar 

  67. Fleming I (2008) Vascular cytochrome P450 enzymes: physiology and pathophysiology. TCM 18:20–25

    PubMed  CAS  Google Scholar 

  68. Rosolowsky M, Falck JR, Willerson JT, Campbell WB (1990) Synthesis of lipoxygenase and epoxygenase products of arachidonic acid by normal and stenosed canine coronary arteries. Circ Res 66:608–621

    PubMed  CAS  Google Scholar 

  69. Larsen BT, Miura H, Hatoum OA, Campbell WB, Hammock BD, Zeldin DC, Falck JR, Gutterman DD (2005) Epoxyeicosatrienoic and dihydroxyeicosatrienoic acids dilate human coronary arterioles via BKca channels: implications for soluble epoxide hydrolase inhibition. Am J Physiol 290:H491–H499

    Google Scholar 

  70. Falck JR, Krishna UM, Reddy YK, Kumar PS, Reddy KM, Hittner SB, Deeter C, Sharma KK, Gauthier KM, Campbell WB (2003) Comparison of the vasodilatory properties of 14, 15-EET analogs: structural requirements for dilation. Am J Physiol 284:H337–H349

    CAS  Google Scholar 

  71. Carroll MA, Schwartzman M, Capdevila J, Falck JR, McGiff JC (1987) Vasoactivity of arachidonic acid epoxides. Europ J Pharmacol 138:281–283

    Article  CAS  Google Scholar 

  72. Zou A, Fleming JT, Falck JR, Jacobs ER, Gebremedhin D, Harder DR, Roman RJ (1996) Stereospecific effects of epoxyeicosatrienoic acids on renal vascular tone and K+-channel activity. Am J Physiol 270:F822–F832

    PubMed  CAS  Google Scholar 

  73. Imig JD, Navar LG, Roman RJ, Reddy KK, Falck JR (1996) Actions of epoxygenase metabolites on the preglomerular vasculature. J Am Soc Nephrol 7:2364–2370

    PubMed  CAS  Google Scholar 

  74. Oltman CL, Weintraub NL, VanRollins M, Dellsperger KC (1998) Epoxyeicosatrienoic acids and dihydroxyeicosatrienoic acids are potent vasodilators in the canine coronary microcirculation. Circ Res 83:932–939

    PubMed  CAS  Google Scholar 

  75. Hayabuchi Y, Nakaya Y, Matsuoka S, Kuroda Y (1998) Endothelium-derived hyperpolarizing factor activates Ca2+-activated K+ channels in porcine coronary artery smooth muscle cells. J Cardiovasc Pharmacol 32:642–649

    Article  PubMed  CAS  Google Scholar 

  76. Fukao M, Mason HS, Kenyon JL, Horowitz B, Keef KD (2001) Regulation of BKCa channels expressed in human embryonic kidney 293 cells by epoxyeicosatrienoic acid. Molec Pharmacol 59:16–23

    CAS  Google Scholar 

  77. Node K, Ruan X-L, Dai J, Yang S-X, Graham L, Zeldin DC, Liao JK (2001) Activation of Gas mediates induction of tissue-type plasminogen activator gene transcription by epoxyeicosatrienoic acids. J Biol Chem 276:15983–15989

    Article  PubMed  CAS  Google Scholar 

  78. Li P-L, Chen C-L, Bortell R, Campbell WB (1999) 11,12-Epoxyeicosatrienoic acid stimulates endogenous mono-ADP-ribosylation in bovine coronary arterial smooth muscle. Circ Res 85:349–356

    PubMed  CAS  Google Scholar 

  79. Sun J, Sui X-X, Bradbury A, Zeldin DC, Conte MS, Liao JK (2002) Inhibition of vascular smooth muscle cell migration by cytochrome P450 epoxygenase-derived eicosanoids. Circ Res 90:1020–1027

    Article  PubMed  CAS  Google Scholar 

  80. Dimitropoulou C, West L, Field MB, White RE, Reddy LM, Falck JR, Imig JD (2007) Protein phosphatase 2A and Ca-activated K channels contribute to 11, 12-epoxyeicosatrienoic acid analog mediated mesenteric arterial dilation. Prostag and Other Lipid Mediat 83:50–61

    Article  CAS  Google Scholar 

  81. Snyder GD, Krishna UM, Falck JR, Spector AA (2002) Evidence for a membrane site of action for 14, 15-EET on expression of aromatase in vascular smooth muscle. Am J Physiol 283:H1936–H1942

    CAS  Google Scholar 

  82. Wong PY, Lin KT, Yan YT, Ahern D, Iles J, Shen SY, Bhatt RK, Falck JR (1993) 14(R),15(S)-Epoxyeicosatrienoic acid receptor in guinea pig mononuclear cell membranes. J Lipid Mediat Cell Signal 6:199–208

    CAS  Google Scholar 

  83. Wong PY-K, Lai P-S, Falck JR (2000) Mechanism and signal transduction of 14(R), 15 (S)-epoxyeicosatrienoic acid (14, 15-EET) binding in guinea pig monocytes. Prostag Other Lipid Med 62:321–333

    Article  CAS  Google Scholar 

  84. Wong PY-K, Lai P-S, Shen S-Y, Belosludtsev YY, Falck JR (1997) Post-receptor signal transduction and regulation of 14(R), 15(S)-epoxyeicosatrienoic acid (14, 15-EET) binding in U-937 cells. J Lipid Med Cell Signal 16:155–169

    Article  CAS  Google Scholar 

  85. Yang W, Tuniki VR, Anjaiah S, Falck JR, Hillard CJ, Campbell WB (2008) Characterization of epoxyeicosatrienoic acid binding site in U937 membranes using a novel radiolabeled agonist, 20-125I-14,15-epoxyeicosa-8(Z)-enoic acid. J Pharmacol Exp Ther 324:1019–1027

    Article  PubMed  CAS  Google Scholar 

  86. Inceoglu B, Schmelzer KR, Morisseau C, Jinks SL, Hammock BD (2007) Soluble epoxide hydrolase inhibition reveals novel biological functions of epoxyeicosatrienoic acids (EETs). Prostag and Other Lipid Mediat 82:42–49

    Article  CAS  Google Scholar 

  87. Chen Y, Falck JR, Tuniki VR, Campbell WB (2009) 20-125Iodo-14, 15-epoxyeicosa-5Z-enoic acid: a high affinity radioligand used to characterize the epoxyeicosatrienoic acid antagonist binding site. J Pharmacol Exp Ther 331:1137–1145

    Article  PubMed  CAS  Google Scholar 

  88. Gauthier KM, Jagadeesh SG, Falck JR, Campbell WB (2003) 14,15-Epoxyeicosa-5(Z)-enoic-mSI: a 14,15- and 5,6-EET antagonist in bovine coronary arteries. Hypertension 42:555–561

    Article  PubMed  CAS  Google Scholar 

  89. Yao X, Garland CJ (2005) Recent developments in vascular endothelial cell transient receptor potential channels. Circ Res 97:853–863

    Article  PubMed  CAS  Google Scholar 

  90. Watanabe H, Viriens J, Prenin J, Droogmans G, Voets T, Nilius B (2003) Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 424:434–438

    Article  PubMed  CAS  Google Scholar 

  91. Earley S, Heppner TJ, Nelson MT, Brayden JE (2005) TRPV4 forms a novel Ca2+ signaling complex with ryanodine receptors and BK Ca channels. Circ Res 97:1270–1279

    Article  PubMed  CAS  Google Scholar 

  92. Loot AE, Popp R, Fissllthaler B, Vriens J, Nilius B, Fleming I (2008) Role of cytochrome P450-dependent transient receptor potential V4 activation in flow-induced vasodilation. Cardiovas Res 80:445–452

    Article  CAS  Google Scholar 

  93. Alonso MT, Alvarez J, Montero M, Sanchez A, Garcia-Sancho J (1991) Agonist-induced Ca influx into human platelets is secondary to emptying of intracellular Ca stores. Biochem J 280:783–789

    PubMed  CAS  Google Scholar 

  94. Alvarez J, Montero M, Garcia-Sancho J (1991) Cytochrome P450 may link intercellular Ca stores with plasma membrane Ca influx. Biochem J 274:193–197

    PubMed  CAS  Google Scholar 

  95. Nilius B, Vriens J, Prenen J, Droogmans G, Voets T (2004) TRPV4 calcium entry channel: a paradigm for gating diversity. Am J Physiol 286:C195–C205

    Article  CAS  Google Scholar 

  96. Behm DJ, Ogbonna A, Wu C, Burns-Kurtis CL, Douglas SA (2009) Epoxyeicosatrienoic acids function as selective, endogenous antagonists of native thromboxane receptors: identification of a novel mechanism of vasodilation. J Pharmacol Exp Ther 328:231–239

    Article  PubMed  CAS  Google Scholar 

  97. Ye D, Zhou W, Lee H-C (2005) Activation of rat mesenteric arterial Katp channels by 11,12-epoxyeicosatrienoic acid. Am J Physiol 288:H358–H364

    CAS  Google Scholar 

  98. Ye D, Zhou W, Lu T, Jagadeesh SG, Falck JR, Lee H-C (2006) Mechanism of rat mesenteric arterial KATP channel activation by 14,15-epoxyeicosatrienoic acid. Am J Physiol 290:J1326–H1336

    Google Scholar 

  99. Sacerdoti D, Bolognesi M, DiPascoli M, Gatta A, McGiff JC, Schwartzman ML, Abraham NG (2006) Rat mesenteric arterial dilator response to 11,12-epoxyeicosatrienoic acid is mediated by activating heme oxygenase. Am J Physiol 291:H1999–H2002

    CAS  Google Scholar 

  100. Jaggar JH, Li A, Parfenova H, Liu J, Umstot ES, Dopico AM, Leffler CW (2005) Heme is a carbon monoxide receptor for large-conducatance C-activated K channels. Circ Res 97:805–812

    Article  PubMed  CAS  Google Scholar 

  101. Widmann MD, Weintraub NL, Fudge JL, Brooks LA, Dellsperger KC (1998) Cytochrome P-450 pathway in acetylcholine-induced canine coronary microvascular vasodilation in vivo. Am J Physiol 274:H283–H289

    PubMed  CAS  Google Scholar 

  102. Nishikawa Y, Stepp DW, Chilian WM (1999) In vivo location and mechanism of EDHF-mediated vasodilation in canine coronary microcirculation. Am J Physiol 277:H1252–H1259

    PubMed  CAS  Google Scholar 

  103. Nishikawa Y, Stepp DW, Chilian WM (2000) Nitric oxide exerts feedback inhibition on EDHF-induced coronary arteriolar dilation in vivo. Am J Physiol 279:H459–H465

    CAS  Google Scholar 

  104. Oltman CL, Kane NL, Fudge JL, Weintraub NL, Dellsperger KC (2001) Endothelium-derived hyperpolarizing factor in coronary microcirculation: responses to arachidonic acid. Am J Physiol 281:H1553–H1560

    CAS  Google Scholar 

  105. Halcox JPJ, Narayanan S, Crames-Joyce L, Mincemoyer R, Quyyumi AA (2001) Characterization of endothelium-derived hyperpolarizing factor in the human forearm microcirculation. Am J Physiol 280:H2470–H2477

    CAS  Google Scholar 

  106. Honing MLH, Smits P, Morrison PJ, Rabelink TJ (2000) Bradykinin-induced vasodilation of human forearm resistance vessels is primarily mediated by endothelium-dependent hyperpolarization. Hypertension 35:1314–1318

    PubMed  CAS  Google Scholar 

  107. Passauer J, Bussemaker E, Lassing G, Pistrosch F, Fauler J, Gross P, Fleming I (2003) Baseline blood flow and bradykinn-induced vasodilator responses in human forearm are insensitive to the cytochrome P450 2C9 (CYP2C9) inhibitor sulfaphenazole. Clin Sci 105:513–518

    Article  PubMed  CAS  Google Scholar 

  108. Taddei S, Varsari D, Cipriano A, Ghiadoni L, Glaetta F, Franzoni F, Magagna A, Virdis A, Salvetti A (2006) Identification of a cytochrome P450 2C9-derived endothelium-derived hyperpolarizing factor in human essential hypertensive patients. J Am Coll Cardiol 48:508–515

    Article  PubMed  CAS  Google Scholar 

  109. Donato AJ, Eskurza I, Jablonski KL, Gano LB, Pierce GL, Seals DR (2008) Cytochrome P450 2C9 signaling does not contribute to age-associated vascular endothelial dysfunction in humans. J Appl Physiol 105:1359–1363

    Article  PubMed  CAS  Google Scholar 

  110. Fisher D, Landmesser U, Spiekermann S, Hilfiker-Kleiner D, Hospely M, Muller M, Busse R, Fleming I, Drexler H (2007) Cytochrome P450 2C9 is involved in flow-dependent vasodilation of peripheral conduit arteries in healthy subjects and patients with chronic heart failure. Europ J Heart Failure 9:770–775

    Article  CAS  Google Scholar 

  111. Marques-Soares C, Dijols S, Macherey A-C, Wester MR, Johnson EF, Dansette PM, Mansuy D (2003) Sulfaphenazole derivatives as tools for comparing cytochrome P450 2C5 and human cytochrome P450 2Cs. Biochemistry 42:6363–6369

    Article  PubMed  CAS  Google Scholar 

  112. Fleming I, Michaelis UR, Bredenkotter D, Fisslthaler B, Dehghani F, Brandes RP, Busse R (2001) Endothelium-derived hyperpolarizing factor synthase (cytochrome P450 2C9) is a functionally significant source of reactive oxygen species in coronary arteries. Circ Res 88:44–51

    Article  PubMed  CAS  Google Scholar 

  113. Fichtlscherer S, Dimmeler S, Breuer S, Busse R, Zeiher AM, Fleming I (2004) Inhibition of cytochrome P450 2C9 improves endothelium-dependent nitric oxide-mediated vasodilation in patients with coronary artery disease. Circulation 109:178–183

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Kathryn Gauthier for her comments and help with the figures and Ms. Gretchen Barg for her secretarial assistance. Support was provided by a grant from the National Heart, Lung and Blood Institute (HL-51055) and by the Deutsche Forschungsgemeinschaft (Exzellenzcluster 147 “Cardio-Pulmonary Systems”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William B. Campbell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campbell, W.B., Fleming, I. Epoxyeicosatrienoic acids and endothelium-dependent responses. Pflugers Arch - Eur J Physiol 459, 881–895 (2010). https://doi.org/10.1007/s00424-010-0804-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-010-0804-6

Keywords

Navigation