Skip to main content

Advertisement

Log in

Characterization of substrate specificity of a rice silicon transporter, Lsi1

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Lsi1 (OsNIP2;1) is the first silicon (silicic acid) transporter identified in plant, which belongs to the nodulin 26-like intrinsic membrane protein (NIP) subfamily. In this study, we characterized the function of this transporter by using the Xenopus laevis oocyte expression system. The transport activity of Lsi1 for silicic acid was significantly inhibited by HgCl2 but not by low temperature. Lsi1 also showed an efflux transport activity for silicic acid. The substrate specificity study showed that Lsi1 was able to transport urea and boric acid; however, the transport activity for silicic acid was not affected by the presence of equimolar urea and was decreased only slightly by boric acid. Furthermore, among the NIPs subgroup, OsNIP2;2 showed transport activity for silicic acid, whereas OsNIP1;1 and OsNIP3;1 did not. We propose that Lsi1 and its close homologues form a unique subgroup of NIP with a distinct ar/R selectivity filter, which is located in the narrowest region on the extra-membrane mouth and govern the substrate specificity of the pore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sripanyakorn S, Jugdaohsingh R, Thompson RPH, Powell JJ (2005) Dietary silicon and bone health. Nutr Bull 30:222–230

    Article  Google Scholar 

  2. Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397

    Article  PubMed  CAS  Google Scholar 

  3. Takahashi E, Hino K (1978) Silica uptake by plant with special reference to the forms of dissolved silica. J Soil Sci Manure Jpn 49:357–360

    CAS  Google Scholar 

  4. Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691

    Article  PubMed  CAS  Google Scholar 

  5. Yamaji N, Ma JF (2007) Spatial distribution and temporal variation of the rice silicon transporter Lsi1. Plant Physiol 143:1306–1313

    Article  PubMed  CAS  Google Scholar 

  6. Ma JF, Tamai K, Ichii M, Wu GF (2002) A rice mutant defective in Si uptake. Plant Physiol 130:2111–2117

    Article  PubMed  CAS  Google Scholar 

  7. Wallace IS, Roberts DM (2004) Homology modeling of representative subfamilies of Arabidopsis major intrinsic proteins. Classification based on the aromatic/arginine selectivity filter. Plant Physiol 135:1059–1068

    Article  PubMed  CAS  Google Scholar 

  8. Forrest KL, Bhave M (2007) Major intrinsic proteins (MIPs) in plants: a complex gene family with major impacts on plant phenotype. Funct Integr Genomics 7:263–289

    Article  PubMed  CAS  Google Scholar 

  9. Dean RM, Rivers RL, Zeidel ML, Roberts DM (1999) Purification and functional reconstitution of soybean nodulin 26. An aquaporin with water and glycerol transport properties. Biochemistry 38:347–353

    Article  PubMed  CAS  Google Scholar 

  10. Choi WG, Roberts DM (2007) Arabidopsis NIP2;1: a major intrinsic protein transporter of lactic acid induced by anoxic stress. J Biol Chem 282:24209–24218

    Article  PubMed  CAS  Google Scholar 

  11. Wallace IS, Roberts DM (2005) Distinct transport selectivity of two structural subclasses of the nodulin-like intrinsic protein family of plant aquaglyceroporin channels. Biochemistry 44:16826–16834

    Article  PubMed  CAS  Google Scholar 

  12. Takano J, Wada M, Ludewig U, Schaaf G, von Wiren N, Fujiwara T (2006) The arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18:1498–1509

    Article  PubMed  Google Scholar 

  13. Preston GM, Carroll TP, Guggino WB, Agre P (1992) Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256:385–387

    Article  PubMed  CAS  Google Scholar 

  14. Ma JF, Goto S, Tamai K, Ichii M (2001) Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiol 127:1773–1780

    Article  PubMed  CAS  Google Scholar 

  15. Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) An efflux transporter of silicon in rice. Nature 448:209–212

    Article  PubMed  CAS  Google Scholar 

  16. Tamai K, Ma JF (2003) Characterization of silicon uptake by rice roots. New Phytol 158:431–436

    Article  CAS  Google Scholar 

  17. Daniels MJ, Chaumont F, Erik Mirkov T, Chrispeels MJ (1996) Characterization of a new vacuolar membrane aquaporin sensitive to mercury at a unique site. Plant Cell 8:587–599

    Article  PubMed  CAS  Google Scholar 

  18. Agre P, Kozono D (2003) Aquaporin water channels: molecular mechanisms for human diseases. FEBS Lett 555:72–78

    Article  PubMed  CAS  Google Scholar 

  19. Maurel C (2007) Plant aquaporins: novel functions and regulation properties. FEBS Lett 581:2227–2236

    Article  PubMed  CAS  Google Scholar 

  20. Tajkhorshid E, Nollert P, Jensen MO, Miercke LJ, O'Connell J, Stroud RM, Schulten K (2002) Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science 296:525–530

    Article  PubMed  CAS  Google Scholar 

  21. Ilan B, Tajkhorshid E, Schulten K, Voth GA (2003) Electrostatic tuning of permeation and selectivity in aquaporin water channels. Biophys J 85:2884–2899

    Google Scholar 

  22. Wallace IS, Choi WG, Roberts DM (2006) The structure, function and regulation of the nodulin 26-like intrinsic protein family of plant aquaglyceroporins. Biochim Biophys Acta 1758:1165–1175

    Article  PubMed  CAS  Google Scholar 

  23. Thomas D, Bron P, Ranchy G, Duchesne L, Cavalier A, Rolland JP, Raguenes-Nicol C, Hubert JF, Haase W, Delamarche C (2002) Aquaglyceroporins, one channel for two molecules. Biochim Biophys Acta 1555:181–186

    Article  PubMed  CAS  Google Scholar 

  24. Wang Y, Schulten K, Tajkhorshid E (2005) What makes an aquaporin a glycerol channel? A comparative study of AqpZ and GlpF. Structure 13:1107–1118

    Article  PubMed  CAS  Google Scholar 

  25. Wu B, Beitz E (2007) Aquaporins with selectivity for unconventional permeants. Cell Mol Life Sci 64:2413–2421

    Article  PubMed  CAS  Google Scholar 

  26. Johansson I, Karlsson M, Shukla VK, Chrispeels MJ, Larsson C, Kjellbom P (1998) Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. Plant Cell 10:451–459

    Article  PubMed  CAS  Google Scholar 

  27. Guenther JF, Chanmanivone N, Galetovic MP, Wallace IS Cobb JA, Roberts DM (2003) Phosphorylation of soybean nodulin 26 on serine 262 enhances water permeability and is regulated developmentally and by osmotic signals. Plant Cell 15:981–991

    Article  PubMed  CAS  Google Scholar 

  28. Katsuhara M, Akiyama Y, Koshio K, Shibasaka M, Kasamo K (2002) Functional analysis of water channels in barley roots. Plant Cell Physiol 43:85–93

    Article  Google Scholar 

  29. Weaver CD, Crombie B, Stacey G, Roberts DM (1991) Calcium-dependent phosphorylation of symbiosome membrane proteins from nitrogen-fixing soybean nodules: evidence for phosphorylation of nodulin-26. Plant Physiol 95:222–227

    Article  PubMed  CAS  Google Scholar 

  30. Weaver CD, Roberts DM (1992) Determination of the site of phosphorylation of nodulin 26 by the calcium-dependent protein kinase from soybean nodules. Biochemistry 31:8954–8959

    Article  PubMed  CAS  Google Scholar 

  31. Ma JF, Takahashi E (2002) Soil, Fertilizer, and Plant Silicon Research in Japan. Elsevier Science, Amsterdam

    Google Scholar 

Download references

Acknowledgment

This research was supported by a grant-in-aid for Scientific Research on Priority Areas from the Ministry of Education, Culture, Sports, Science and Technology of Japan (nos. 15380053 and 17078008 to J.F.M.) and a grant from the Ministry of Agriculture, Forestry and Fisheries of Japan (Rice Genome Project IP-5003 to J.F.M.). We thank Dr. Maki Katsuhara and Dr. Nobuyuki Uozumi for instruction in oocyte assay. We also thank Fang Jie Zhao for his critical reading of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Feng Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitani, N., Yamaji, N. & Ma, J.F. Characterization of substrate specificity of a rice silicon transporter, Lsi1. Pflugers Arch - Eur J Physiol 456, 679–686 (2008). https://doi.org/10.1007/s00424-007-0408-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-007-0408-y

Keywords

Navigation