Skip to main content

Advertisement

Log in

Visual gamma oscillations: waves, correlations, and other phenomena, including comparison with experimental data

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Mean-field theory of brain dynamics is applied to explain the properties of gamma (≳30 Hz) oscillations of cortical activity often seen during vision experiments. It is shown that mm-scale patchy connections in the primary visual cortex can support collective gamma oscillations with the correct frequencies and spatial structure, even when driven by uncorrelated inputs. This occurs via resonances associated with the the periodic modulation of the network connections, rather than being due to single-cell properties alone. Near-resonant gamma waves are shown to obey the Schrödinger equation, which enables techniques and insights from quantum theory to be used in exploring these classical oscillations. Resulting predictions for gamma responses to stimuli account in a unified way for a wide range of experimental results, including why oscillations and zero-lag synchrony are associated, and variations in correlation functions with time delay, intercellular distance, and stimulus features. They also imply that gamma oscillations may enable a form of frequency multiplexing of neural signals. Most importantly, it is shown that correlations reproduce experimental results that show maximal correlations between cells that respond to related features, but little correlation with other cells, an effect that has been argued to be associated with segmentation of a scene into separate objects. Consistency with infill of missing contours and increase in response with length of bar-shaped stimuli are discussed. Background correlations expected in the absence of stimulation are also calculated and shown to be consistent in form with experimental measurements and similar to stimulus-induced correlations in structure. Finally, possible links of gamma instabilities to certain classes of photically induced seizures and visual hallucinations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz M and Stegun IA (1965). Handbook of mathematical functions. Dover, New York

    Google Scholar 

  • Bosking WH, Zhang Y, Schofield B and Fitzpatrick D (1997). Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J Neurosci 17: 2112

    PubMed  CAS  Google Scholar 

  • Breakspear M, Roberts JA, Terry JR, Rodrigues S, Mahant N and Robinson PA (2006). A unifying explanation of generalized seizures through nonlinear brain modeling and bifurcation analysis. Cerebral Cortex 16: 1296

    Article  PubMed  CAS  Google Scholar 

  • Bressler SL, Coppola R and Nakamura R (1993). Episodic multiregional cortical coherence at multiple frequncies during visual task performance. Nature 366: 153

    Article  PubMed  CAS  Google Scholar 

  • Bressloff PC (2002). Bloch waves, periodic feature maps and cortical pattern formation. Phys Rev Lett 89: 088101

    Article  PubMed  CAS  Google Scholar 

  • Bressloff PC and Cowan JD (2002). SO(3) symmetry breaking mechanism for orientation and spatial frequency tuning in the visual cortex. Phys Rev Lett 88: 078102

    Article  PubMed  CAS  Google Scholar 

  • Bressloff PC, Cowan JD, Golubitsky M, Thomas PJ and Wiener MC (2001). Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex. Philos Trans R Soc Lond B 356: 299

    Article  CAS  Google Scholar 

  • Coombes S, Venkov NA, Shiau L, Bojak I, Liley DTJ, Laing CR (2007) Integral neural field equations, axonal delays, patchy connections, and an equivalent PDE model in 2+1 dimensions (submitted)

  • Dayan P, Abbott LF (2001) Theoretical neuroscience. MIT Press, Cambridge

    Google Scholar 

  • Destexhe A and Paré D (1999). Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J Neurophysiol 81: 1531

    PubMed  CAS  Google Scholar 

  • De Valois RL and De Valois KK (1990). Spatial vision. Oxford University Press, Oxford

    Google Scholar 

  • Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M and Reitboeck HJ (1988). Coherent oscillations: a mechanism of feature linking in the visual cortex. Biol Cybernet 60: 121

    Article  CAS  Google Scholar 

  • Engel AK, König P, Gray CM and Singer W (1990). Stimulus-dependent neuronal oscillations in cat visual cortes: inter-columnar interaction as determined by cross-correlation analysis. Eur J Neurosci 2: 588

    Article  PubMed  Google Scholar 

  • Engel AK, König P, Kreiter AK, Schillen TB and Singer W (1992). Temporal coding in the visual cortex: new vistas on integration in the nervous system. Trends Neurosci 15: 218

    Article  PubMed  CAS  Google Scholar 

  • Engel AK, König P, Kreiter AK and Singer W (1991). Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex. Science 252: 1177

    Article  CAS  Google Scholar 

  • Engel AK, König P and Singer W (1991). Direct physiological evidence for scene segmentation by temporal coding. Proc Natl Acad Sci USA 88: 9136

    Article  PubMed  CAS  Google Scholar 

  • Engel AK, Kreiter AK, König P and Singer W (1991). Synchronization of oscillatory neuronal responses between striate and extrastriate visual cortical areas of the cat. Proc Natl Acad Sci USA 88: 6048

    Article  PubMed  CAS  Google Scholar 

  • Engel AK, Roelfsema PR, Fries P, Brecht M and Singer W (1997). Role of the temporal domain for response selection and perceptual binding. Cerebral Cortex 7: 571

    Article  PubMed  CAS  Google Scholar 

  • Engel AK and Singer W (2001). Temporal binding and the neural correlates of sensory awareness. Trends Cogn Sci 5: 16

    Article  PubMed  Google Scholar 

  • Freeman WJ (1975). Mass action in the nervous system. Academic, New York

    Google Scholar 

  • Frien A, Eckhorn R, Bauer R, Woelbern T and Kehr H (1994). Stimulus-specific fast oscillations at zero phase between visual areas V1 and V2 of awake monkey. Neuro Report 5: 2273

    CAS  Google Scholar 

  • Fries P, Roelfsema PR, Engel AK, König P and Singer W (1997). Synchronization of oscillatory responses in visual cortex correlates with perception in interocular rivalry. Proc Nat Acad Sci USA 94: 12699

    Article  PubMed  CAS  Google Scholar 

  • Gray CM, König P, Engel AK and Singer W (1989). Oscillatory responses in cat visual cortex exhibit intercolumnar synchronization which reflects global stimulus properties. Nature 338: 334

    Article  PubMed  CAS  Google Scholar 

  • Gray CM and Singer W (1989). Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad USA 86: 1698

    Article  CAS  Google Scholar 

  • Jirsa VK and Haken H (1996). Field theory of electromagnetic brain activity. Phys Rev Lett 77: 960

    Article  PubMed  CAS  Google Scholar 

  • Kandel ER, Schwartz JH, Jessell TM (eds) (1991) Principles of neural science, 3rd edn. Appleton and Lange

  • Koch C (1999). Biophyics of computation. Oxford University Press, Oxford

    Google Scholar 

  • König P and Engel AK (1995). Correlated firing in sensory-motor systems. Curr Opin Neurobiol 5: 511

    Article  PubMed  Google Scholar 

  • König P, Engel AK and Singer W (1995). Relation between oscillatory activity and long-range synchronization in cat visual cortex. Proc Nat Acad Sci USA 92: 290

    Article  PubMed  Google Scholar 

  • Kreiter AK and Singer W (1992). Oscillatory neuronal responses in the visual cortex of the awake macaque monkey. Eur J Neurosci 4: 369

    Article  PubMed  Google Scholar 

  • Lopes da Silva FH, Hoeks A, Smits H and Zetterberg LH (1974). Model of brain rhythmic activity: the alpha rhythm of the thalamus. Kybernetic 15: 27

    Article  CAS  Google Scholar 

  • Lund JS, Angelucci A and Bressloff PC (2003). Anatomical substrates for functional columns in macaque monkey primary visual cortex. Cerebral Cortex 12: 15

    Article  Google Scholar 

  • Maldonado PE, Friedman-Hill S and Gray CM (2000). Dynamics of striate cortical activity in the alert macaque: II. Fast time scale synchronization. Cerebral Cortex 10: 1117

    Article  PubMed  CAS  Google Scholar 

  • McPhedran RC, Botten LC, Asatryan AA, Nicorovici NA, Robinson PA and de Sterke CM (1999). Calculation of electromagnetic properties of regular and random arrays of metallic and dielectric cylinders. Phys Rev E 60: 7614

    Article  CAS  Google Scholar 

  • Murthy VN and Fetz EE (1992). Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys. Proc Natl Acad Sci USA 89: 5670

    Article  PubMed  CAS  Google Scholar 

  • Nunez PL (1974). Wave-like properties of the alpha rhythm. IEEE Trans Biomed Eng 21: 473

    Article  Google Scholar 

  • Nunez PL (1995). Neocortical dynamics and human EEG rhythms. Oxford University Press, Oxford

    Google Scholar 

  • Nunez PL and Srinivasan R (2006). Electric fields of the brain: the neurophysics of EEG, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Obermayer K, Sejnowski TJ (eds) (2001) Self-organizing map formation: foundations of neural computation, MIT Press, Cambridge

  • O’Connor SC and Robinson PA (2003). Wave-number spectrum of electrocorticographic signals. Phys Rev E 67: 051912

    Article  CAS  Google Scholar 

  • Parra J, Kalitzin SN, Iriarte J, Blanes W, Velis DN and Lopesda Silva FH (2003). Gamma-band phase clustering and photosensitivity: is there an underlying mechanism common to photosensitive epilepsy and visual perception. Brain 126: 1164

    Article  PubMed  CAS  Google Scholar 

  • Rennie CJ, Robinson PA and Wright JJ (2002). Unified neurophysical model of EEG spectra and evoked potentials. Biol Cybern 86: 457

    Article  PubMed  CAS  Google Scholar 

  • Rennie CJ, Wright JJ and Robinson PA (2000). Mechanisms of cortical electrical activity and emergence of gamma rhythm. J Theor Biol 205: 17

    Article  PubMed  CAS  Google Scholar 

  • Robinson PA (2003). Neurophysical theory of coherence and correlations of electroencephalographic and electrocorticographic signals. J Theor Biol 222: 163

    Article  PubMed  CAS  Google Scholar 

  • Robinson PA (2005). Propagator theory of brain dynamics. Phys Rev E 72: 011904

    Article  CAS  Google Scholar 

  • Robinson PA (2006). Patchy propagators, cortical dynamics and the generation of spatially structured gamma oscillations. Phys Rev E 73: 041904

    Article  CAS  Google Scholar 

  • Robinson PA, Rennie CJ and Rowe DL (2002). Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Phys Rev E 65: 041924

    Article  CAS  Google Scholar 

  • Robinson PA, Rennie CJ, Rowe DL and O’Connor SC (2004). Estimation of multiscale neurophysiologic parameters by electroencephalographic means. Human Brain Mapp 23: 53

    Article  CAS  Google Scholar 

  • Robinson PA, Rennie CJ and Wright JJ (1997). Propagation and stability of waves of electrical activity in the cerebral cortex. Phys Rev E 56: 826

    Article  CAS  Google Scholar 

  • Robinson PA, Rennie CJ, Wright JJ, Bahramali H, Gordon E and Rowe DL (2001). Prediction of electroencephalographic spectra from neurophysiology. Phys Rev E 63: 021903

    Article  CAS  Google Scholar 

  • Roelfsema PR, Engel AK, König P and Singer W (1997). Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature 385: 157

    Article  PubMed  CAS  Google Scholar 

  • Roelfsema PR, König P, Engel AK, Sireteanu R and Singer W (1994). Reduced synchronization in the visual cortex of cats with strabismic amblyopia. Eur J Neurosci 6: 1645

    Article  PubMed  CAS  Google Scholar 

  • Rowe DL, Robinson PA and Rennie CJ (2004). Estimation of neurophysiological parameters from the waking EEG using a biophysical model of brain dynamics. J Theor Biol 231: 413

    Article  PubMed  Google Scholar 

  • Salinas E and Sejnowski TJ (2001). Correlated neuronal activity and the flow of neural information. Nat Rev Neurosci 2: 539

    Article  PubMed  CAS  Google Scholar 

  • Shadlen MN and Movshon JA (1999). Synchrony unbound: A critical evaluation of the temporal binding hypothesis. Neuron 24: 67

    Article  PubMed  CAS  Google Scholar 

  • Singer W (1993). Synchronization of cortical activity and its putative role in information processing and learning. Ann Rev Physiol 55: 349

    Article  CAS  Google Scholar 

  • Singer W and Gray CM (1995). Visual feature integration and the temporal correlation hypothesis. Ann Rev Neurosci 18: 555

    Article  PubMed  CAS  Google Scholar 

  • Somers DC, Todorov EV, Siapas AG, Toth LJ, Kim D-S and Sur M (1998). A local circuit approach to understanding integration of long-range inputs in primary visual cortex. Cerebral Cortex 8: 204

    Article  PubMed  CAS  Google Scholar 

  • Steriade M (2000). Corticothalamic resonance, states of vigilance and mentation. Neurosci 101: 243–276

    Article  CAS  Google Scholar 

  • Steyn-Ross ML, Steyn-Ross DA, Sleigh JW and Liley DTJ (1999). Theoretical electroencephalogram stationary spectrum for a white-noise-driven cortex: Evidence for a general anesthetic-induced phase transition. Phys Rev E 60: 7299

    Article  CAS  Google Scholar 

  • T’so DY, Gilbert CD and Wiesel TN (1986). Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis. J Neurosci 6: 1160

    CAS  Google Scholar 

  • Wilson HR and Cowan JD (1973). A mathematical theory for the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13: 55

    Article  PubMed  CAS  Google Scholar 

  • Wright JJ and Liley DTJ (1996). Dynamics of the brain at global and microscopic scales: neural networks and the EEG. Behav Brain Sci 19: 285

    Article  Google Scholar 

  • Worrell GA, Parish L, Cranstoun SD, Jonas R, Baltuch G and Litt B (2004). High-frequency oscillations and seizure generation in neocortical epilepsy. Brain 127: 1496

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Robinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, P.A. Visual gamma oscillations: waves, correlations, and other phenomena, including comparison with experimental data. Biol Cybern 97, 317–335 (2007). https://doi.org/10.1007/s00422-007-0177-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-007-0177-x

Keywords

Navigation