Skip to main content
Log in

Long-term anti-kindling effects of desynchronizing brain stimulation: a theoretical study

  • Letter to the Editor
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

In a modeling study we show that desynchronization stimulation may have powerful anti-kindling effects. For this, we incorporate spike-timing-dependent plasticity into a generic network of coupled phase oscillators, which serves as a model network of synaptically interacting neurons. Two states may coexist under spontaneous conditions: a state of uncorrelated firing and a state of pathological synchrony. Appropriate stimulation protocols make the network learn or unlearn the pathological synaptic interactions, respectively. Low-frequency periodic pulse train stimulation causes a kindling. Permanent high-frequency stimulation, used as golden standard for deep brain stimulation in medically refractory movement disorders, basically freezes the synaptic weights. In contrast, desynchronization stimulation, e.g., by means of a multi-site coordinated reset, has powerful long-term anti-kindling effects and enables the network to unlearn pathologically strong synaptic interactions. We propose desynchronization stimulation for the therapy of movement disorders and epilepsies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Abbott LF, Nelson SB (2000) Synaptic plasticity: taming the beast. Nat Neurosci 3:1178–1183

    Article  PubMed  CAS  Google Scholar 

  • Albensi BC, Ata G, Schmidt E, Waterman JD, Janigro D (2004) Activation of long-term synaptic plasticity causes suppression of epileptiform activity in rat hippocampal slices. Brain Res 998:56–64

    Article  PubMed  CAS  Google Scholar 

  • Benabid A, Pollak P, Gervason C, Hoffmann D, Gao DM, Hommel M, Perret JE, de Rougemont J (1991) Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet 337(8738):403–6

    Article  PubMed  CAS  Google Scholar 

  • Bergman H, Feingold A, Nini A, Raz A, Slovin H, Abeles M, Vaadia E (1998) Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates. Trends Neurosci. (21):32–38

  • Best EN (1979) Null space in the Hodgkin-Huxley equations. Biophys J 27:87–104

    PubMed  CAS  Google Scholar 

  • Bi GQ, Poo MM (1998) Activity-induced synaptic modifications in hippocampal culture, dependence on spike timing, synaptic strength and cell type. J Neurosci 18:10464–10472

    PubMed  CAS  Google Scholar 

  • Debanne D, Gahweiler BH, Thompson SM (1998) Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J Physiol (London) 507:237–247

    Article  CAS  Google Scholar 

  • Dietz V, Müller R (2004) Degradation of neuronal function following a spinal cord injury: mechanisms and countermeasures. Brain 127:2221–2231

    Article  PubMed  Google Scholar 

  • Feldman DE (2000) Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron 27:45–56

    Article  PubMed  CAS  Google Scholar 

  • Goddar G (1967) Development of epileptic seizures through brain stimulation at low intensity. Nature 214:1020–1021

    Article  PubMed  Google Scholar 

  • Guttman R, Lewis S, Rinzel J (1980) Control of repetitive firing in squid axon membrane as a model for a neuroneoscillator. J Physiol (London) 395:377–395

    Google Scholar 

  • Hebb DO (1949) The orgnization of behavior. Wiley, New York

    Google Scholar 

  • Honeycutt RL (1992) Stochastic Runge-Kutta algorithms. I. White noise. Phys Rev A 45(2):600–603

    Article  PubMed  CAS  Google Scholar 

  • Izhikevich E, Gally J, Edelman G (2004) Spike-timing dynamics of neural groups. Cereb Cortex 14:933–944

    Article  PubMed  Google Scholar 

  • Kilgard MP, Merzenich MM (1998) Cortical map reorganization enabled by nucleus basalis activity. Science 279:1714–1718

    Article  PubMed  CAS  Google Scholar 

  • Kuramoto Y (1984) Chemical oscillations, waves, and turbulence. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Lenz F, Kwan H, Martin R, Tasker R, Dostrovsky J, Lenz Y (1994) Single unit analysis of the human ventral thalamic nuclear group. Tremor-related activity in functionally identified cells. Brain 117:531–543

    Google Scholar 

  • Limousin P, Speelman J, Gielen F, Janssens M (1999) Multicentre European study of thalamic stimulation in parkinsonian and essential tremor. J Neurol Neurosurg Psychiatry 66(3):289–296

    Article  PubMed  CAS  Google Scholar 

  • Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213–215

    Article  PubMed  CAS  Google Scholar 

  • McInryre C, Savasta M, Kerkerian-Le Goff K, Vitek J (2004) Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin Neurophysiol 115:1239–1248

    Article  PubMed  Google Scholar 

  • Morimoto K, Fahnestock M, Racine R (2004) Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol 73:1–60

    Article  PubMed  CAS  Google Scholar 

  • Nini A, Feingold A, Slovin H, Bergman H (1995) Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of parkinsonism. J Neurophysiol 74:1800

    PubMed  CAS  Google Scholar 

  • Pare D, Curro’Dossi R, Steriade M (1990) Neuronal basis of the parkinsonian resting tremor: a hypothesis and its implications for treatment. Neurosi 35:217–226

    Article  CAS  Google Scholar 

  • Ranck J (1975) Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res 98:417–440

    Article  PubMed  Google Scholar 

  • Schuett S, Bonhoeffer T, Hübener M (2001) Pairing-induced changes of orientation maps in cat visual cortex. Neuron 32:325–337

    Article  PubMed  CAS  Google Scholar 

  • Seliger P, Young SC, Tsimring LS (2002) Plasticity and learning in a network of coupled phase oscillators. Phys Rev E 65:041906

    Article  CAS  Google Scholar 

  • Smirnakis S, Brewer A, Schmid M, Tolias A, Schüz A, Augath M, Inhoffen W, Wandell B, Logothetis N (2005) Lack of long-term cortical reorganization after macaque retinal lesions. Nature 435:300–307

    Article  PubMed  CAS  Google Scholar 

  • Song S, Miller KD, Abbott LF (2000) Competitive Hebian learning trough spike-timing-dependent synaptic plasticity. Nat Neurosci 3(9):919–926

    Article  PubMed  CAS  Google Scholar 

  • Speckmann E, Elger C (1991) The neurophysiological basis of epileptic activity: a condensed overview. Epilepsy Res Suppl 2:1–7

    PubMed  CAS  Google Scholar 

  • Strogatz SH (2000)From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143:1–20

    Article  Google Scholar 

  • Tass PA (1999) Phase resetting in Medicine and Biology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Tass PA (2001a) Desynchronizing double-pulse phase resetting and application to deep brain stimulation. Biol Cybern 85:343–354

    Article  PubMed  CAS  Google Scholar 

  • Tass PA (2001b) Effective desynchronization with a resetting pulse train followed by a single pulse. Europhys Lett 55(2):171–177

    Article  CAS  Google Scholar 

  • Tass PA (2002) Desynchronization of brain rhythms with soft phase-resetting techniques. Biol Cybern 87:102–115

    Article  PubMed  Google Scholar 

  • Tass PA (2003a) A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations. Biol Cybern 89:81–88

    Article  Google Scholar 

  • Tass PA (2003b) Desynchronization by means of a coordinated reset of neural sub-populations - a novel technique for demand-controlled deep brain stimulation. Prog Theor Phys Suppl (Kyoto) 150:281–296

    Article  Google Scholar 

  • Tass PA, Russel DF, Barnikol UB, Neiman AB, Yakusheva TA, Voges J, Sturm V, Freund HJ (2005) Selective disruption of neural synchronization by means of repeated transient phase reset. (submitted)

  • Volkmann J (2004) Deep brain stimulation for the treatment of parkinson’s disease. J Clin Neurophysiol 21:6–17

    Article  PubMed  Google Scholar 

  • Winfree AT (1980) The geometry of biological time. Springer, Berlin Heildeberg New York

    Google Scholar 

  • Yao H, Dan Y (2001) Stimulus timing-dependent plasticity in cortical processing of orientation. Neuron 32:315–323

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q, Tao HW, Poo MM (2003) Reversal and stabilization of synaptic modifications in a developing visual system. Science 300:1953–1957

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Tass.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tass, P.A., Majtanik, M. Long-term anti-kindling effects of desynchronizing brain stimulation: a theoretical study. Biol Cybern 94, 58–66 (2006). https://doi.org/10.1007/s00422-005-0028-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-005-0028-6

Keywords

Navigation