Skip to main content
Log in

Anatomical predictors of maximum isometric and concentric knee extensor moment

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The most important anatomical determinants of in vivo joint moment magnitude have yet to be defined. Relationships between maximal knee extensor moment and quadriceps muscle volume, anatomical (ACSA) and physiological (PCSA) cross-sectional area, muscle architecture and moment arm (MA) were compared. Nineteen untrained men and women performed maximal isokinetic knee extensions under isometric conditions (90° joint angle) and at 30° and 300° s−1. Magnetic resonance and ultrasound imaging techniques were used to measure vastus lateralis PCSA and fascicle length (FL), quadriceps ACSA, volume and patellar tendon MA. Muscle volume was the best predictor of extensor moment measured isometrically (R 2 = 0.60) and at 30° s−1 (R 2 = 0.74). PCSA × FL was the best predictor of moment at 300° s−1 (R 2 = 0.59). MA was not an important predictor. ACSA was the second best predictor at all three speeds and could be recommended as an ideal measure given its relative ease of measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P (2002) Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol 93:1318–1326

    PubMed  Google Scholar 

  • Adams GR, Harris RT, Woodard D, Dudley GA (1993) Mapping of electrical muscle stimulation using MRI. J Appl Physiol 74:532–537

    PubMed  CAS  Google Scholar 

  • Andersen LL, Andersen JL, Magnusson SP, Suetta C, Madsen JL, Christensen LR, Aagaard P (2005) Changes in the human muscle force-velocity relationship in response to resistance training and subsequent detraining. J Appl Physiol 99:87–94. doi:10.1152/japplphysiol.00091.2005

    Article  PubMed  Google Scholar 

  • Bamman MM, Newcomer BR, Larson-Meyer DE, Weinsier RL, Hunter GR (2000) Evaluation of the strength-size relationship in vivo using various muscle size indices. Med Sci Sports Exerc 32:1307–1313. doi:10.1097/00005768-200007000-00019

    Article  PubMed  CAS  Google Scholar 

  • Blazevich AJ, Cannavan D, Coleman DR, Horne S (2007) Influence of concentric and eccentric resistance training on architectural adaptation in human quadriceps muscles. J Appl Physiol 103:1565–1575. doi:10.1152/japplphysiol.00578.2007

    Article  PubMed  Google Scholar 

  • Blazevich AJ, Gill ND (2006) Reliability of unfamiliar, multijoint, uni- and bilateral strength tests: effects of load and laterality. J Strength Cond Res 20:226–230. doi:10.1519/R-14613.1

    Article  PubMed  Google Scholar 

  • Blazevich AJ, Gill ND, Zhou S (2006) Intra- and intermuscular variation in human quadriceps femoris architecture assessed in vivo. J Anat 209:289–310. doi:10.1111/j.1469-7580.2006.00619.x

    Article  PubMed  Google Scholar 

  • Bottinelli R, Canepari M, Pellegrino MA, Reggiani C (1996) Force-velocity properties of human skeletal muscle fibres: myosin heavy chain isoform and temperature dependence. J Physiol 495(Pt 2):573–586

    PubMed  CAS  Google Scholar 

  • Fleckenstein JL, Shellock FG (1991) Exertional muscle injuries: magnetic resonance imaging evaluation. Top Magn Reson Imaging 3:50–70. doi:10.1097/00002142-199109000-00006

    Article  PubMed  CAS  Google Scholar 

  • Fukunaga T, Miyatani M, Tachi M, Kouzaki M, Kawakami Y, Kanehisa H (2001) Muscle volume is a major determinant of joint torque in humans. Acta Physiol Scand 172:249–255. doi:10.1046/j.1365-201x.2001.00867.x

    Article  PubMed  CAS  Google Scholar 

  • Fukunaga T, Roy RR, Shellock FG, Hodgson JA, Day MK, Lee PL, Kwong-Fu H, Edgerton VR (1992) Physiological cross-sectional area of human leg muscles based on magnetic resonance imaging. J Orthop Res 10:928–934. doi:10.1002/jor.1100100623

    Article  PubMed  CAS  Google Scholar 

  • Hakkinen K, Keskinen KL (1989) Muscle cross-sectional area and voluntary force production characteristics in elite strength- and endurance-trained athletes and sprinters. Eur J Appl Physiol Occup Physiol 59:215–220. doi:10.1007/BF02386190

    Article  PubMed  CAS  Google Scholar 

  • Hakkinen K, Komi PV, Alen M (1985) Effect of explosive type strength training on isometric force- and relaxation-time, electromyographic and muscle fibre characteristics of leg extensor muscles. Acta Physiol Scand 125:587–600. doi:10.1111/j.1748-1716.1985.tb07760.x

    Article  PubMed  CAS  Google Scholar 

  • Houston ME, Norman RW, Froese EA (1988) Mechanical measures during maximal velocity knee extension exercise and their relation to fibre composition of the human vastus lateralis muscle. Eur J Appl Physiol Occup Physiol 58:1–7. doi:10.1007/BF00636595

    Article  PubMed  CAS  Google Scholar 

  • Hoy MG, Zajac FE, Gordon ME (1990) A musculoskeletal model of the human lower extremity: the effect of muscle, tendon, and moment arm on the moment-angle relationship of the musculotendon actuators at the hip, knee, and ankle. J Biomech 23:157–169. doi:10.1016/0021-9290(90)90349-8

    Article  PubMed  CAS  Google Scholar 

  • Ichinose Y, Kanehisa H, Ito M, Kawakami Y, Fukunaga T (1998) Morphological and functional differences in the elbow extensor muscle between highly trained male and female athletes. Eur J Appl Physiol Occup Physiol 78:109–114. doi:10.1007/s004210050394

    Article  PubMed  CAS  Google Scholar 

  • Ito M, Kawakami Y, Ichinose Y, Fukashiro S, Fukunaga T (1998) Nonisometric behavior of fascicles during isometric contractions of a human muscle. J Appl Physiol 85:1230–1235

    PubMed  CAS  Google Scholar 

  • Kanehisa H, Ikegawa S, Fukunaga T (1994) Comparison of muscle cross-sectional area and strength between untrained women and men. Eur J Appl Physiol Occup Physiol 68:148–154. doi:10.1007/BF00244028

    Article  PubMed  CAS  Google Scholar 

  • Kanehisa H, Ikegawa S, Tsunoda N, Fukunaga T (1995) Strength and cross-sectional areas of reciprocal muscle groups in the upper arm and thigh during adolescence. Int J Sports Med 16:54–60

    Article  PubMed  CAS  Google Scholar 

  • Kawakami Y, Kubo K, Kanehisa H, Fukunaga T (2002) Effect of series elasticity on isokinetic torque-angle relationship in humans. Eur J Appl Physiol 87:381–387. doi:10.1007/s00421-002-0657-6

    Article  PubMed  CAS  Google Scholar 

  • Kellis E, Baltzopoulos V (1999) In vivo determination of the patella tendon and hamstrings moment arms in adult males using videofluoroscopy during submaximal knee extension and flexion. Clin Biomech (Bristol, Avon) 14:118–124. doi:10.1016/S0268-0033(98)00055-2

  • Kinugasa R, Kawakami Y, Fukunaga T (2005) Muscle activation and its distribution within human triceps surae muscles. J Appl Physiol 99:1149–1156. doi:10.1152/japplphysiol.01160.2004

    Article  PubMed  Google Scholar 

  • Lu TW, O’Connor JJ (1996) Lines of action and moment arms of the major force-bearing structures crossing the human knee joint: comparison between theory and experiment. J Anat 189(Pt 3):575–585

    PubMed  Google Scholar 

  • Maughan RJ, Watson JS, Weir J (1983) Strength and cross-sectional area of human skeletal muscle. J Physiol 338:37–49

    PubMed  CAS  Google Scholar 

  • Meyer RA, Prior BM (2000) Functional magnetic resonance imaging of muscle. Exerc Sport Sci Rev 28:89–92

    PubMed  CAS  Google Scholar 

  • Morse CI, Degens H, Jones DA (2007) The validity of estimating quadriceps volume from single MRI cross-sections in young men. Eur J Appl Physiol 100:267–274. doi:10.1007/s00421-007-0429-4

    Article  PubMed  Google Scholar 

  • Morse CI, Thom JM, Reeves ND, Birch KM, Narici MV (2005) In vivo physiological cross-sectional area and specific force are reduced in the gastrocnemius of elderly men. J Appl Physiol 99:1050–1055. doi:10.1152/japplphysiol.01186.2004

    Article  PubMed  Google Scholar 

  • Narici MV, Landoni L, Minetti AE (1992) Assessment of human knee extensor muscles stress from in vivo physiological cross-sectional area and strength measurements. Eur J Appl Physiol Occup Physiol 65:438–444. doi:10.1007/BF00243511

    Article  PubMed  CAS  Google Scholar 

  • Nisell R, Nemeth G, Ohlsen H (1986) Joint forces in extension of the knee. Analysis of a mechanical model. Acta Orthop Scand 57:41–46

    Article  PubMed  CAS  Google Scholar 

  • Patten C, Meyer RA, Fleckenstein JL (2003) T2 mapping of muscle. Semin Musculoskelet Radiol 7:297–305. doi:10.1055/s-2004-815677

    Article  PubMed  Google Scholar 

  • Reeves ND, Narici MV (2003) Behavior of human muscle fascicles during shortening and lengthening contractions in vivo. J Appl Physiol 95:1090–1096

    PubMed  Google Scholar 

  • Rybak LD, Torriani M (2003) Magnetic resonance imaging of sports-related muscle injuries. Top Magn Reson Imaging 14:209–219. doi:10.1097/00002142-200304000-00008

    Article  PubMed  Google Scholar 

  • Schantz P, Randall-Fox E, Hutchison W, Tyden A, Astrand PO (1983) Muscle fibre type distribution, muscle cross-sectional area and maximal voluntary strength in humans. Acta Physiol Scand 117:219–226. doi:10.1111/j.1748-1716.1983.tb07200.x

    Article  PubMed  CAS  Google Scholar 

  • Scott SH, Engstrom CM, Loeb GE (1993) Morphometry of human thigh muscles. Determination of fascicle architecture by magnetic resonance imaging. J Anat 182(Pt 2):249–257

    PubMed  Google Scholar 

  • Sesto ME, Radwin RG, Block WF, Best TM (2005) Anatomical and mechanical changes following repetitive eccentric exertions. Clin Biomech (Bristol, Avon) 20:41–49. doi:10.1016/j.clinbiomech.2004.09.002

    Article  Google Scholar 

  • Shellock FG, Fleckenstein JL (2000) Muscle physiology and pathophysiology: magnetic resonance imaging evaluation. Semin Musculoskelet Radiol 4:459–479. doi:10.1055/s-2000-13171

    Article  PubMed  CAS  Google Scholar 

  • Van Leeuwen JL, Spoor CW (1992) Modelling mechanically stable muscle architectures. Philos Trans R Soc Lond B Biol Sci 336:275–292. doi:10.1098/rstb.1992.0061

    Article  PubMed  Google Scholar 

  • Yamaguchi GT, Zajac FE (1989) A planar model of the knee joint to characterize the knee extensor mechanism. J Biomech 22:1–10. doi:10.1016/0021-9290(89)90179-6

    Article  PubMed  CAS  Google Scholar 

  • Zhang LQ, Wang G, Nuber GW, Press JM, Koh JL (2003) In vivo load sharing among the quadriceps components. J Orthop Res 21:565–571. doi:10.1016/S0736-0266(02)00196-1

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony J. Blazevich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blazevich, A.J., Coleman, D.R., Horne, S. et al. Anatomical predictors of maximum isometric and concentric knee extensor moment. Eur J Appl Physiol 105, 869–878 (2009). https://doi.org/10.1007/s00421-008-0972-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-008-0972-7

Keywords

Navigation