Skip to main content
Log in

Cholinergic chemosensory cells in the auditory tube

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The luminal composition of the auditory tube influences its function. The mechanisms involved in the monitoring are currently not known. For the lower respiratory epithelium, such a sentinel role is carried out by cholinergic brush cells. Here, using two different mouse strains expressing eGFP under the control of the promoter of choline acetyltransferase (ChAT), we show the presence of solitary cholinergic villin-positive brush cells also in the mouse auditory tube epithelium. They express the vesicular acetylcholine (ACh) transporter and proteins of the taste transduction pathway such as α-gustducin, phospholipase C beta 2 (PLCβ2) and transient receptor potential cation channel subfamily M member 5 (TRPM5). Immunoreactivity for TRPM5 and PLCβ2 was found regularly, whereas α-gustducin was absent in approximately 15% of the brush cells. Messenger RNA for the umami taste receptors (TasR), Tas1R1 and 3, and for the bitter receptors, Tas2R105 and Tas2R108, involved in perception of cycloheximide and denatonium were detected in the auditory tube. Using a transgenic mouse that expresses eGFP under the promotor of the nicotinic ACh receptor α3-subunit, we identified cholinoceptive nerve fibers that establish direct contacts to brush cells in the auditory tube. A subpopulation of these fibers displayed also CGRP immunoreactivity. Collectively, we show for the first time the presence of brush cells in the auditory tube. These cells are equipped with all proteins essential for sensing the composition of the luminal microenvironment and for communication of the changes to the CNS via attached sensory nerve fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barth AL, Pitt JTL (1996) The high amino-acid content of sputum from cystic fibrosis patients promotes growth of auxotrophic Pseudomonas aeruginosa. Med Microbiol 45:110–119

    Article  CAS  Google Scholar 

  • Bowden JJ, Baluk P, Lefevre PM, Schoeb TR, Lindsey JR, McDonald DM (1996) Sensory denervation by neonatal capsaicin treatment exacerbates Mycoplasma pulmonis infection in rat airways. Am J Physiol 270(3 Pt 1):L393–L403

    PubMed  CAS  Google Scholar 

  • Chandrashekar J, Mueller KL, Hoon MA, Adler E, Feng L, Guo W, Zuker CS, Ryba NJ (2000) T2Rs function as bitter taste receptors. Cell 100(6):703–711

    Article  PubMed  CAS  Google Scholar 

  • Chaudhari N, Pereira E, Roper SD (2009) Taste receptors for umami: the case for multiple receptors. Am J Clin Nutr 90(3):738S–742S

    Article  PubMed  CAS  Google Scholar 

  • Corbeel L (2007) What is new in otitis media? Eur J Pediatr 166(6):511–519

    Article  PubMed  Google Scholar 

  • Cunsolo E, Marchioni D, Leo G, Incorvaia C, Presutti L (2010) Functional anatomy of the eustachian tube. Int J Immunopathol Pharmacol 23(1 Suppl):4–7

    PubMed  CAS  Google Scholar 

  • Czajkowski R, Jafra S (2009) Quenching of acyl-homoserine lactone-dependent quorum sensing by enzymatic disruption of signal molecules. Acta Biochim Pol 56(1):1–16

    PubMed  CAS  Google Scholar 

  • Finger TE, St Jeor VL, Kinnamon JC, Silver WL (1990) Ultrastructure of substance P- and CGRP-immunoreactive nerve fibers in the nasal epithelium of rodents. J Comp Neurol 294(2):293–305

    Article  PubMed  CAS  Google Scholar 

  • Finger TE, Böttger B, Hansen A, Anderson KT, Alimohammadi H, Silver WL (2003) Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration. Proc Natl Acad Sci USA 100(15):8981–8986

    Article  PubMed  CAS  Google Scholar 

  • Frahm S, Slimak MA, Ferrarese L, Santos-Torres J, Antolin-Fontes B, Auer S, Filkin S, Pons S, Fontaine JF, Tsetlin V, Maskos U, Ibañez-Tallon I (2011) Aversion to nicotine is regulated by the balanced activity of β4 and α5 nicotinic receptor subunits in the medial habenula. Neuron 70(3):522–535

    Article  PubMed  CAS  Google Scholar 

  • Fushan AA, Simons CT, Slack JP, Manichaikul A, Drayna D (2009) Allelic polymorphism within the TAS1R3 promoter is associated with human taste sensitivity to sucrose. Curr Biol 19(15):1288–1293

    Article  PubMed  CAS  Google Scholar 

  • Gebhard A, Gebert A (1999) Brush cells of the mouse intestine possess a specialized glycocalyx as revealed by quantitative lectin histochemistry. Further evidence for a sensory function. J Histochem Cytochem 47(6):799–808

    Article  PubMed  CAS  Google Scholar 

  • Gulbransen BD, Clapp TR, Finger TE, Kinnamon SC (2008) Nasal solitary chemoreceptor cell responses to bitter and trigeminal stimulants in vitro. J Neurophysiol 99(6):2929–2937

    Article  PubMed  Google Scholar 

  • Hills BA (1984) Analysis of eustachian surfactant and its function as a release agent. Arch Otolaryngol 110(1):3–9

    Article  PubMed  CAS  Google Scholar 

  • Höfer D, Drenckhahn D (1992) Identification of brush cells in the alimentary and respiratory system by antibodies to villin and fimbrin. Histochem 98(4):237–242

    Article  Google Scholar 

  • Höfer D, Drenckhahn D (1998) Identification of the taste cell G-protein a-gustducin, in brush cells of the rat pancreatic duct system. Histochem Cell Biol 110:303–309

    Article  PubMed  Google Scholar 

  • Höfer D, Püschel B, Drenckhahn D (1996) Taste receptor-like cells in the rat gut identified by expression of a-gustducin. Proc Natl Acad Sci USA 93:6631–6634

    Article  PubMed  Google Scholar 

  • Hofmann T, Chubanov V, Gudermann T, Montell C (2003) TRPM5 is a voltage-modulated and Ca(2 +)-activated monovalent selective cation channel. Curr Biol 13(13):1153–1158

    Article  PubMed  CAS  Google Scholar 

  • Ishii T, Kaga K (1976) Autonomic nervous system of the cat middle ear mucosa. Ann Otol Rhinol Laryngol 85(2 Suppl 25 Pt 2):51–57

    PubMed  CAS  Google Scholar 

  • Jinno S, Hua XY, Yaksh TL (1994) Nicotine and acetylcholine induce release of calcitonin gene-related peptide from rat trachea. J Appl Physiol 76(4):1651–1656

    PubMed  CAS  Google Scholar 

  • Kaske S, Krasteva G, König P, Kummer W, Hofmann T, Gudermann T, Chubanov V (2007) TRPM5, a taste-signaling transient receptor potential ion-channel, is a ubiquitous signaling component in chemosensory cells. BMC Neurosci 8:49

    Article  PubMed  Google Scholar 

  • Kinnamon SC (2011) Taste receptor signalling—from tongues to lungs. Acta Physiol (Oxf). doi:10.1111/j.1748-1716.2011.02308.x

  • Krasteva G, Canning BJ, Hartmann P, Veres TZ, Papadakis T, Mühlfeld C, Schliecker K, Tallini YN, Braun A, Hackstein H, Baal N, Weihe E, Schütz B, Kotlikoff M, Ibanez-Tallon I, Kummer W (2011) Cholinergic chemosensory cells in the trachea regulate breathing. Proc Natl Acad Sci USA 108(23):9478–9483

    Article  PubMed  CAS  Google Scholar 

  • Kugler P, Höfer D, Mayer B, Drenckhahn D (1994) Nitric oxide synthase and NADP-linked glucose-6-phosphate dehydrogenase are co-localized in brush cells of rat stomach and pancreas. J Histochem Cytochem 42:1317–1321

    Article  PubMed  CAS  Google Scholar 

  • Lim DJ (1984) Functional morphology of the tubotympanum. An overview. Acta Otolaryngol Suppl 414:13–18

    Article  PubMed  CAS  Google Scholar 

  • Liman ER (2007) TRPM5 and taste transduction. Handb Exp Pharmacol 179:287–298

    Article  PubMed  CAS  Google Scholar 

  • Luciano L, Reale E (1969) A new cell type (“brush cell”) in the gall bladder epithelium of the mouse. J Submicrosc Cytol Pathol 1:45–52

    Google Scholar 

  • Luciano L, Reale E, Ruska H (1968) Über eine “chemorezeptive Sinneszelle” in der Trachea der Ratte. Z Zellforsch 85:350–375

    Article  PubMed  CAS  Google Scholar 

  • Luciano L, Castellucci M, Reale E (1981) The brush cells of the common bile duct of the rat. Cell Tissue Res 218:403–420

    Article  PubMed  CAS  Google Scholar 

  • Mao D, Yasuda RP, Fan H, Wolfe BB, Kellar KJ (2006) Heterogeneity of nicotinic cholinergic receptors in rat superior cervical and nodose ganglia. Mol Pharmacol 70:1693–1699

    Article  PubMed  CAS  Google Scholar 

  • Margolskee RF (2002) Molecular mechanisms of bitter and sweet taste transduction. J Biol Chem 277(1):1–4

    Article  PubMed  CAS  Google Scholar 

  • Mason PS, Adam E, Prior M, Warner JO, Randall CJ (2002) Effect of bacterial endotoxin and middle ear effusion on ciliary activity: implications for otitis media. Laryngoscope 112(4):676–680

    Article  PubMed  Google Scholar 

  • Merigo F, Benati D, Tizzano M, Osculati F, Sbarbati A (2005) alpha-Gustducin immunoreactivity in the airways. Cell Tissue Res 319(2):211–219

    Article  PubMed  CAS  Google Scholar 

  • Meyerhof W, Batram C, Kuhn C, Brockhoff A, Chudoba E, Bufe B, Appendino G, Behrens M (2010) The molecular receptive ranges of human TAS2R bitter taste receptors. Chem Senses 35(2):157–170

    Article  PubMed  CAS  Google Scholar 

  • Nakano T, Iwama Y (1989) Intermediate epithelium lining the mouse auditory tube. Acta Anat (Basel) 136(2):134–138

    Article  CAS  Google Scholar 

  • Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJ, Zuker CS (2001) Mammalian sweet taste receptors. Cell 106(3):381–390

    Article  PubMed  CAS  Google Scholar 

  • Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, Ryba NJ, Zuker CS (2002) An amino-acid taste receptor. Nature 416(6877):199–202

    Article  PubMed  CAS  Google Scholar 

  • Ogura T, Krosnowski K, Zhang L, Bekkerman M, Lin W (2010) Chemoreception regulates chemical access to mouse vomeronasal organ: role of solitary chemosensory cells. PLoS ONE 5:e11924

    Article  PubMed  Google Scholar 

  • Oyagi S, Ito J, Honjo I (1990) The trigeminal sensory innervation to the middle ear, eustachian tube, and pharynx: a study by the horseradish peroxidase tracer method. Laryngoscope 100(8):873–877

    Article  PubMed  CAS  Google Scholar 

  • Park K, Ueno K, Lim DJ (1992) Developmental anatomy of the eustachian tube and middle ear in mice. Am J Otolaryngol 13(2):93–100

    Article  PubMed  CAS  Google Scholar 

  • Pérez CA, Huang L, Rong M, Kozak JA, Preuss AK, Zhang H, Max M, Margolskee RF (2002) A transient receptor potential channel expressed in taste receptor cells. Nat Neurosci 5(11):1169–1176

    Article  PubMed  Google Scholar 

  • Rhodin J, Dalhamn T (1956) Electron microscopy of the tracheal ciliated mucosa in rat. Z Zellforsch 44:345–412

    Article  PubMed  CAS  Google Scholar 

  • Rössler P, Kroner C, Freitag J, Noè J, Breer H (1998) Identification of a phospholipase C beta subtype in rat taste cells. Eur J Cell Biol 77(3):253–261

    Article  PubMed  Google Scholar 

  • Sbarbati A, Osculati F (2005) The taste cell-related diffuse chemosensory system. Prog Neurobiol 75:295–307

    Article  PubMed  CAS  Google Scholar 

  • Sbarbati A, Merigo F, Benati D, Tizzano M, Bernardi P, Osculati F (2004) Laryngeal chemosensory clusters. Chem Senses 29(8):683–692

    Article  PubMed  CAS  Google Scholar 

  • Sbarbati A, Bramanti P, Benati D, Merigo F (2010) The diffuse chemosensory system: exploring the iceberg toward the definition of functional roles. Prog Neurobiol 91:77–89

    Article  PubMed  Google Scholar 

  • Silva DG (1966) The fine structure of multivesicular cells with large microvilli in the epithelium of the mouse colon. J Ultrastruct Res 16:693–705

    Article  PubMed  CAS  Google Scholar 

  • Svane-Knudsen V, Larsen HF, Brask T (1988) Secretory otitis media—a question of surface activity in the eustachian tube? Acta Otolaryngol 105(1–2):114–119

    Article  PubMed  CAS  Google Scholar 

  • Tallini YN, Shui B, Greene KS, Deng KY, Doran R, Fisher PJ, Zipfel W, Kotlikoff MI (2006) BAC transgenic mice express enhanced green fluorescent protein in central and peripheral cholinergic neurons. Physiol Genomics 27:391–397

    Article  PubMed  CAS  Google Scholar 

  • Tizzano M, Finger TE (2011) Nasal chemosensory cells link to inflammation. AChemS 2011, online program no 25 (abstract)

  • Tizzano M, Gulbransen BD, Vandenbeuch A, Clapp TR, Herman JP, Sibhatu HM, Churchill ME, Silver WL, Kinnamon SC, Finger TE (2010) Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals. Proc Natl Acad Sci USA 107(7):3210–3215

    Article  PubMed  CAS  Google Scholar 

  • Uddman R, Luts A, Sundler F (1985) Occurrence and distribution of calcitonin gene-related peptide in the mammalian respiratory tract and middle ear. Cell Tissue Res 241(3):551–555

    Article  PubMed  CAS  Google Scholar 

  • Venturi V, Subramoni S (2009) Future research trends in the major chemical language of bacteria. HFSP J 3(2):105–116

    Article  PubMed  CAS  Google Scholar 

  • von Engelhardt J, Eliava M, Meyer AH, Rozov A, Monyer H (2007) Functional characterization of intrinsic cholinergic interneurons in the cortex. J Neurosci 27:5633–5642

    Article  Google Scholar 

  • Wessler IK, Kirkpatrick CJ (2001) The non-neuronal cholinergic system: an emerging drug target in the airways. Pulm Pharmacol Ther 14(6):423–434

    Article  PubMed  CAS  Google Scholar 

  • Winther B, Gwaltney JM Jr, Phillips CD, Hendley JO (2005) Radiopaque contrast dye in nasopharynx reaches the middle ear during swallowing and/or yawning. Acta Otolaryngol 125(6):625–628

    Article  PubMed  CAS  Google Scholar 

  • Wolleswinkel-van den Bosch JH, Stolk EA, Francois M, Gasparini R, Brosa M (2010) The health care burden and societal impact of acute otitis media in seven European countries: results of an internet survey. Vaccine 28(Suppl 6):G39–G52

    Article  PubMed  Google Scholar 

  • Wong GT, Gannon KS, Margolskee RF (1996) Transduction of bitter and sweet taste by gustducin. Nature 381:796–800

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Zhao Z, Margolskee R, Liman E (2007) The transduction channel TRPM5 is gated by intracellular calcium in taste cells. J Neurosci 27:5777–5786

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Hannah Monyer, Jakob von Engelhardt (Interdisciplinary Center for Neurosciences, Heidelberg, Germany) and Michael Kotlikoff (Cornell University, Ithaca, USA) for allowing the use of the ChAT-eGFP animals, which were generated in their laboratories. We thank Karola Michael for expert technical help with the figures. This work was supported by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Krasteva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krasteva, G., Hartmann, P., Papadakis, T. et al. Cholinergic chemosensory cells in the auditory tube. Histochem Cell Biol 137, 483–497 (2012). https://doi.org/10.1007/s00418-012-0911-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-012-0911-x

Keywords

Navigation