Skip to main content

Advertisement

Log in

Immunolocalization of WNK4 in mouse kidney

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Initial reports claim that WNK4 localization is mainly at intercellular junctions of distal convoluted tubules (DCT) and cortical collecting ducts (CCD) in the kidney. However, we recently clarified the major targets of WNK4 kinase to be the OSR1/SPAK kinases and the Na–Cl co-transporter (NCC), an apical membrane protein in the DCT, thus raising the question of whether the cellular localization of WNK4 is at intercellular junctions. In this study, we re-evaluate the intrarenal and intracellular immunolocalization of WNK4 in the mouse kidney using a newly generated anti-WNK4 antibody. By performing double immunofluorescence of WNK4 with several nephron-segment-specific markers, we have found that WNK4 is present in podocytes in glomeruli, the cortical thick ascending limb of Henle’s loop including macula densa, and the medullary collecting ducts (MCD), in addition to the previously identified nephron segments, i.e., DCT and CCD. These results are consistent with the finding that WNK4 constitutes a kinase cascade with OSR1/SPAK and NCC in the DCT, and highlights a novel role for WNK4 in nephron segments newly identified as being WNK4-positive in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Chiga M, Rai T, Yang SS, Ohta A, Takizawa T, Sasaki S, Uchida S (2008) Dietary salt regulates the phosphorylation of OSR1/SPAK kinases and the sodium chloride cotransporter through aldosterone. Kidney Int 74:1403–1409

    Article  PubMed  CAS  Google Scholar 

  • Delaloy C, Elvira-Matelot E, Clemessy M, Zhou XO, Imbert-Teboul M, Houot AM, Jeunemaitre X, Hadchouel J (2008) Deletion of WNK1 first intron results in misregulation of both isoforms in renal and extrarenal tissues. Hypertension 52:1149–1154

    Article  PubMed  CAS  Google Scholar 

  • Fushimi K, Uchida S, Hara Y, Hirata Y, Marumo F, Sasaki S (1993) Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature 361:549–552

    Article  PubMed  CAS  Google Scholar 

  • Gordon RD (1986) Syndrome of hypertension and hyperkalemia with normal glomerular filtration rate. Hypertension 8:93–102

    PubMed  CAS  Google Scholar 

  • Jiang Y, Ferguson WB, Peng JB (2007) WNK4 enhances TRPV5-mediated calcium transport: potential role in hypercalciuria of familial hyperkalemic hypertension caused by gene mutation of WNK4. Am J Physiol Renal Physiol 292:F545–F554

    Article  PubMed  CAS  Google Scholar 

  • Kahle KT, Wilson FH, Leng Q, Lalioti MD, O’Connell AD, Dong K, Rapson AK, MacGregor GG, Giebisch G, Hebert SC, Lifton RP (2003) WNK4 regulates the balance between renal NaCl reabsorption and K+ secretion. Nat Genet 35:372–376

    Article  PubMed  CAS  Google Scholar 

  • Kahle KT, Gimenez I, Hassan H, Wilson FH, Wong RD, Forbush B, Aronson PS, Lifton RP (2004a) WNK4 regulates apical and basolateral Cl- flux in extrarenal epithelia. Proc Natl Acad Sci USA 101:2064–2069

    Article  PubMed  CAS  Google Scholar 

  • Kahle KT, Macgregor GG, Wilson FH, Van Hoek AN, Brown D, Ardito T, Kashgarian M, Giebisch G, Hebert SC, Boulpaep EL, Lifton RP (2004b) Paracellular Cl- permeability is regulated by WNK4 kinase: insight into normal physiology and hypertension. Proc Natl Acad Sci USA 101:14877–14882

    Article  PubMed  CAS  Google Scholar 

  • Kaplan MR, Plotkin MD, Lee WS, Xu ZC, Lytton J, Hebert SC (1996) Apical localization of the Na-K-Cl cotransporter, rBSC1, on rat thick ascending limbs. Kidney Int 49:40–47

    Article  PubMed  CAS  Google Scholar 

  • Kriz W, Kaissling B (1985) Structural organization of the mammalian kidney. In: Seldin DW, Giebish G (eds) The Kidney: physiology and pathophysiology, vol 1. Raven Press, New York, pp 265–306

    Google Scholar 

  • Loffing J, Loffing-Cueni D, Valderrabano V, Klausli L, Hebert SC, Rossier BC, Hoenderop JG, Bindels RJ, Kaissling B (2001) Distribution of transcellular calcium and sodium transport pathways along mouse distal nephron. Am J Physiol Renal Physiol 281:F1021–F1027

    PubMed  CAS  Google Scholar 

  • Mutig K, Saritas T, Uchida S, Kahl T, Borowski T, Paliege A, Bohlick A, Bleich M, Shan Q, Bachmann S (2010) Short-term stimulation of the thiazide-sensitive Na+-Cl- cotransporter by vasopressin involves phosphorylation and membrane translocation. Am J Physiol Renal Physiol 298:F502–F509

    Article  PubMed  CAS  Google Scholar 

  • Ohta A, Rai T, Yui N, Chiga M, Yang SS, Lin SH, Sohara E, Sasaki S, Uchida S (2009) Targeted disruption of the Wnk4 gene decreases phosphorylation of Na-Cl cotransporter, increases Na excretion and lowers blood pressure. Hum Mol Genet 18:3978–3986

    Article  PubMed  CAS  Google Scholar 

  • O’Reilly M, Marshall E, Speirs HJ, Brown RW (2003) WNK1, a gene within a novel blood pressure control pathway, tissue-specifically generates radically different isoforms with and without a kinase domain. J Am Soc Nephrol 14:2447–2456

    Article  PubMed  Google Scholar 

  • O’Reilly M, Marshall E, Macgillivray T, Mittal M, Xue W, Kenyon CJ, Brown RW (2006) Dietary electrolyte-driven responses in the renal WNK kinase pathway in vivo. J Am Soc Nephrol 17:2402–2413

    Article  PubMed  Google Scholar 

  • Rafiqi FH, Zuber AM, Glover M, Richardson C, Fleming S, Jovanovic S, Jovanovic A, O’Shaughnessy KM, Alessi DR (2010) Role of the WNK-activated SPAK kinase in regulating blood pressure. EMBO Mol Med 2:63–75

    Article  PubMed  CAS  Google Scholar 

  • Reiche J, Theilig F, Rafiqi FH, Carlo AS, Militz D, Mutig K, Todiras M, Christensen EI, Ellison DH, Bader M, Nykjaer A, Bachmann S, Alessi D, Willnow TE (2010) SORLA/SORL1 functionally interacts with SPAK to control renal activation of Na(+)-K(+)-Cl(-) cotransporter 2. Mol Cell Biol 30:3027–3037

    Article  PubMed  CAS  Google Scholar 

  • Ring AM, Cheng SX, Leng Q, Kahle KT, Rinehart J, Lalioti MD, Volkman HM, Wilson FH, Hebert SC, Lifton RP (2007a) WNK4 regulates activity of the epithelial Na+ channel in vitro and in vivo. Proc Natl Acad Sci USA 104:4020–4024

    Article  PubMed  CAS  Google Scholar 

  • Ring AM, Leng Q, Rinehart J, Wilson FH, Kahle KT, Hebert SC, Lifton RP (2007b) An SGK1 site in WNK4 regulates Na+ channel and K+ channel activity and has implications for aldosterone signaling and K+ homeostasis. Proc Natl Acad Sci USA 104:4025–4029

    Article  PubMed  CAS  Google Scholar 

  • Schild L, Lu Y, Gautschi I, Schneeberger E, Lifton RP, Rossier BC (1996) Identification of a PY motif in the epithelial Na channel subunits as a target sequence for mutations causing channel activation found in Liddle syndrome. EMBO J 15:2381–2387

    PubMed  CAS  Google Scholar 

  • Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, Gunel M, Milford DV, Lipkin GW, Achard JM, Feely MP, Dussol B, Berland Y, Unwin RJ, Mayan H, Simon DB, Farfel Z, Jeunemaitre X, Lifton RP (2001) Human hypertension caused by mutations in WNK kinases. Science 293:1107–1112

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi K, Rai T, Kobayashi K, Sohara E, Suzuki T, Itoh T, Suda S, Hayama A, Sasaki S, Uchida S (2004) Disease-causing mutant WNK4 increases paracellular chloride permeability and phosphorylates claudins. Proc Natl Acad Sci USA 101:4690–4694

    Article  PubMed  CAS  Google Scholar 

  • Yang CL, Angell J, Mitchell R, Ellison DH (2003) WNK kinases regulate thiazide-sensitive Na-Cl cotransport. J Clin Invest 111:1039–1045

    PubMed  CAS  Google Scholar 

  • Yang CL, Liu X, Paliege A, Zhu X, Bachmann S, Dawson DC, Ellison DH (2007a) WNK1 and WNK4 modulate CFTR activity. Biochem Biophys Res Commun 353:535–540

    Article  PubMed  CAS  Google Scholar 

  • Yang SS, Morimoto T, Rai T, Chiga M, Sohara E, Ohno M, Uchida K, Lin SH, Moriguchi T, Shibuya H, Kondo Y, Sasaki S, Uchida S (2007b) Molecular pathogenesis of pseudohypoaldosteronism type II: generation and analysis of a Wnk4(D561A/+) knockin mouse model. Cell Metab 5:331–344

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiko Uchida.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1333 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohno, M., Uchida, K., Ohashi, T. et al. Immunolocalization of WNK4 in mouse kidney. Histochem Cell Biol 136, 25–35 (2011). https://doi.org/10.1007/s00418-011-0827-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-011-0827-x

Keywords

Navigation