Skip to main content
Log in

Cultivation of an immortalized human corneal endothelial cell population and two distinct clonal subpopulations on thermo-responsive carriers

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Recently, it was possible to show that human corneal endothelial cells (HCEC) can be cultured on thermo-responsive polymer substrates, and can be harvested as entire cell sheets without losing viability. We sought to study HCEC sheet cultivation on such cell culture carriers under serum-free conditions as the next consequential step in developing methods for generation of corneal endothelial cell transplants.

Methods

An immortalized heterogenous HCEC population and two immortalized, clonally grown HCEC lines (HCEC-B4G12 and HCEC-H9C1) were cultured on thermo-responsive substrates under serum-supplemented and serum-free culture conditions. Cell sheets were characterized by phase contrast microscopy and by immunofluorescent staining for ZO-1, Na+,K+-ATPase, and vinculin.

Results

All tested HCEC populations were able to adhere, spread and proliferate on thermo-responsive substrates under serum-supplemented conditions. Under serum-free conditions, pre-coating of the polymer substrates with ECM proteins was necessary to facilitate attachment and spreading of the cells, except in the case of HCEC-B4G12 cells. The heterogenous HCEC population formed closed monolayers, properly localized ZO-1 to lateral cell borders, and had moderate vinculin levels under serum-free, and higher vinculin levels under serum-supplemented culture conditions. HCEC-B4G12 cells formed closed monolayers, showed proper localization of ZO-1 and Na+,K+-ATPase to lateral cell borders, and had high vinculin levels irrespective of culture conditions. In contrast, HCEC-H9C1 cells had lowest vinculin levels under serum-supplemented, and higher vinculin levels under serum-free culture conditions. ZO-1 was detected throughout the cytoplasm under both culture conditions. These loosely adherent cells were only able to form a closed monolayer under serum-supplemented conditions.

Conclusions

Serum-free production of HCEC sheets is possible. The extremely adherent clonal HCEC line B4G12 produced higher vinculin levels than the other two tested HCEC populations, and showed strong adherence to the thermo-responsive, polymeric culture substratum irrespective of culture conditions. This cell line closely resembles terminally differentiated HCEC in vivo, and was found to be particularly suitable for further studies on HCEC cell sheet engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aboalchamat B, Engelmann K, Bohnke M, Eggli P, Bednarz J (1999) Morphological and functional analysis of immortalized human corneal endothelial cells after transplantation. Exp Eye Res 69:547–553, doi:10.1006/exer.1999.0736

    Article  PubMed  CAS  Google Scholar 

  2. Bednarz J, Doubilei V, Wollnik PCM, Engelmann K (2001) Effect of three different media on serum free culture of donor corneas and isolated human corneal endothelial cells. Br J Ophthalmol 85:1416–1420, doi:10.1136/bjo.85.12.1416

    Article  PubMed  CAS  Google Scholar 

  3. Bednarz J, Teifel M, Friedl P, Engelmann K (2000) Immortalization of human corneal endothelial cells using electroporation protocol optimized for human corneal endothelial and human retinal pigment epithelial cells. Acta Ophthalmol Scand 78:130–136, doi:10.1034/j.1600-0420.2000.078002130.x

    Article  PubMed  CAS  Google Scholar 

  4. Gramm S, Komber H, Schmaljohann D (2005) Copolymerization kinetics of N-isopropylacrylamide and diethylene glycol monomethylether monomethacrylate determined by online NMR spectroscopy. J Polym Sci Part Polym Chem 43:142–148, doi:10.1002/pola.20514

    Article  CAS  Google Scholar 

  5. Hadlock T, Singh S, Vacanti JP, Mclaughlin BJ (1999) Ocular cell monolayers cultured on biodegradable substrates. Tissue Eng 5:187–196, doi:10.1089/ten.1999.5.187

    Article  PubMed  CAS  Google Scholar 

  6. Hatakeyama H, Kikuchi A, Yamato M, Okano T (2007) Patterned biofunctional designs of thermoresponsive surfaces for spatiotemporally controlled cell adhesion, growth, and thermally induced detachment. Biomaterials 28:3632–3643, doi:10.1016/j.biomaterials.2007.04.019

    Article  PubMed  CAS  Google Scholar 

  7. Ishino Y, Sano Y, Nakamura T, Connon CJ, Rigby H, Fullwood NJ et al (2004) Amniotic membrane as a carrier for cultivated human corneal endothelial cell transplantation. Invest Ophthalmol Vis Sci 45:800–806, doi:10.1167/iovs.03-0016

    Article  PubMed  Google Scholar 

  8. Koizumi N, Sakamoto Y, Okumura N, Okahara N, Tsuchiya H, Torii R et al (2007) Cultivated corneal endothelial cell sheet transplantation in a primate model. Invest Ophthalmol Vis Sci 48:4519–4526, doi:10.1167/iovs.07-0567

    Article  PubMed  Google Scholar 

  9. Korinek PM (1994) Amorphous fluoropolymers - a new-generation of products. Macromolecular Symposia 82:61–65, http://www3.interscience.wiley.com/journal/60500249/home

    Article  CAS  Google Scholar 

  10. Lai JY, Hsiue GH (2007) Functional biomedical polymers for corneal regenerative medicine. Reactive Funct Polymers 67:1284–1291, doi:10.1016/j.reactfunctpolym.2007.07.060

    Article  CAS  Google Scholar 

  11. Lange TM, Wood TO, Mclaughlin BJ (1993) Corneal endothelial-cell transplantation using Descemets-membrane as a carrier. J Cataract Refract Surg 19:232–235

    PubMed  CAS  Google Scholar 

  12. Melles GRJ, Lander F, Rietveld FJR (2002) Transplantation of Descemet’s membrane carrying viable endothelium through a small scleral incision. Cornea 21:415–418, doi:10.1097/00003226-200205000-00016

    Article  PubMed  Google Scholar 

  13. Mimura T, Yamagami S, Yokoo S, Usui T, Tanaka K, Hattori S et al (2004) Cultured human corneal endothelial cell transplantation with a collagen sheet in a rabbit model. Invest Ophthalmol Vis Sci 45:2992–2997, doi:10.1167/iovs.03-1174

    Article  PubMed  Google Scholar 

  14. Mohay J, Lange TM, Soltau JB, Wood TO, Mclaughlin BJ (1994) Transplantation of corneal endothelial-cells using a cell carrier device. Cornea 13:173–182, doi:10.1097/00003226-199403000-00011

    Article  PubMed  CAS  Google Scholar 

  15. Moller-Pedersen T, Hartmann U, Ehlers N, Engelmann K (2001) Evaluation of potential organ culture media for eye banking using a human corneal endothelial cell growth assay. Graefes Arch Clin Exp Ophthalmol 239:778–782, doi:10.1007/s004170100354

    Article  PubMed  CAS  Google Scholar 

  16. Nitschke M, Götze T, Gramm S, Werner C (2007) Detachment of human endothelial cell sheets from thermo-responsive poly(NiPAAm-co-DEGMA) carriers. Express Polym Lett 1:660–666, doi:10.3144/expresspolymlett.2007.90

    Article  CAS  Google Scholar 

  17. Nitschke M, Gramm S, Götze T, Valtink M, Drichel J, Voit B et al (2007) Thermo-responsive poly(NiPAAm-co-DEGMA) substrates for gentle harvest of human corneal endothelial cell sheets. J Biomed Mater Res A 80:1003–1010, doi:10.1002/jbm.a.31098

    PubMed  Google Scholar 

  18. Nitschke M, König U, Lappan U, Minko S, Simon F, Zschoche S et al (2007) Low pressure plasma based approaches to fluorocarbon polymer surface modification. J Appl Polym Sci 103:100–109, doi:10.1002/app.24717

    Article  CAS  Google Scholar 

  19. Nitschke M, Zschoche S, Baier A, Simon F, Werner C (2004) Low pressure plasma immobilization of thin hydrogel films on polymer surfaces. Surf Coat Tech 185:120–125, doi:10.1016/j.surfcoat.2003.12.006

    Article  CAS  Google Scholar 

  20. Richards RG, Stiffanic M, Owen GRH, Riehle M, Gwynn IAP, Curtis ASG (2001) Immunogold labelling of fibroblast focal adhesion sites visualised in fixed material using scanning electron microscopy, and living, using internal reflection microscopy. Cell Biol Int 25:1237–1249, doi:10.1006/cbir.2001.0807

    Article  PubMed  CAS  Google Scholar 

  21. Rzaev ZMO, Dincer S, Piskin E (2007) Functional copolymers of N-isopropylacrylamide for bioengineering applications. Prog Polym Sci 32:534–595, doi:10.1016/j.progpolymsci.2007.01.006

    Article  CAS  Google Scholar 

  22. Schild HG (1992) Poly (N-Isopropylacrylamide) - experiment, theory and application. Prog Polym Sci 17:163–249, doi:10.1016/0079-6700(92)90023-R

    Article  CAS  Google Scholar 

  23. Schmaljohann D (2005) Thermo-responsive polymers and hydrogels in tissue engineering. e-Polymers 21, http://www.e-polymers.org/journal/abstract.cfm?abstract_Id=811

  24. Schmaljohann D, Beyerlein D, Nitschke M, Werner C (2004) Thermo-reversible swelling of thin hydrogel films immobilized by low-pressure plasma. Langmuir 20:10107–10114, doi:10.1021/la034653f

    Article  PubMed  CAS  Google Scholar 

  25. Schmaljohann D, Oswald J, Jorgensen B, Nitschke M, Beyerlein D, Werner C (2003) Thermo-responsive PNiAAm-g-PEG films for controlled cell detachment. Biomacromolecules 4:1733–1739, doi:10.1021/bm034160p

    Article  PubMed  CAS  Google Scholar 

  26. Tsuda Y, Kikuchi A, Yamato M, Sakurai Y, Umezu M, Okano T (2004) Control of cell adhesion and detachment using temperature and thermoresponsive copolymer grafted culture surfaces. J Biomed Mater Res A 69:70–78, doi:10.1002/jbm.a.20114

    Article  PubMed  Google Scholar 

  27. Valtink M, Gruschwitz R, Funk RHW, Engelmann K (2007) Two clonal cell lines of immortalized human corneal endothelial cells show either differentiated or precursor cell characteristics. Cells Tissues Organs 187:286–294, doi:10.1159/000113406

    Article  Google Scholar 

  28. van Dooren BTH, Mulder PGH, Nieuwendaal CP, Beekhuis WH, Melles GRJ (2007) Endothelial cell density after posterior lamellar keratoplasty: Five- to seven-year follow-up. Am J Ophthalmol 144:471–473, doi:10.1016/j.ajo.2007.05.015

    Article  PubMed  Google Scholar 

  29. Wencan W, Mao Y, Wentao Y, Fan L, Jia Q, Qinmei W et al (2007) Using basement membrane of human amniotic membrane as a cell carrier for cultivated cat corneal endothelial cell transplantation. Curr Eye Res 32:199–215, doi:10.1080/02713680601174165

    Article  PubMed  Google Scholar 

  30. Yamato M, Akiyama Y, Kobayashi H, Yang J, Kikuchi A, Okano T (2007) Temperature-responsive cell culture surfaces for regenerative medicine with cell sheet engineering. Prog Polym Sci 32:1123–1133, doi:10.1016/j.progpolymsci.2007.06.002

    Article  CAS  Google Scholar 

  31. Yang J, Yamato M, Nishida K, Ohki T, Kanzaki M, Sekine H et al (2006) Cell delivery in regenerative medicine: The cell sheet engineering approach. J Control Release 116:193–203, doi:10.1016/j.jconrel.2006.06.022

    Article  PubMed  CAS  Google Scholar 

  32. Yang J, Yamato M, Shimizu T, Sekine H, Ohashi K, Kanzaki M et al (2007) Reconstruction of functional tissues with cell sheet engineering. Biomaterials 28:5033–5043, doi:10.1016/j.biomaterials.2007.07.052

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank J. Drichel (IPF Dresden) for excellent assistance with cell culture experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Valtink.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Götze, T., Valtink, M., Nitschke, M. et al. Cultivation of an immortalized human corneal endothelial cell population and two distinct clonal subpopulations on thermo-responsive carriers. Graefes Arch Clin Exp Ophthalmol 246, 1575–1583 (2008). https://doi.org/10.1007/s00417-008-0904-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-008-0904-6

Keywords

Navigation