Skip to main content

Advertisement

Log in

Effect of photodynamic therapy on the function of the outer blood-retinal barrier in an in vitro model

  • Laboratory Investigation
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Photodynamic therapy (PDT) is a well established clinical treatment for age-related macular degeneration (AMD), and comprises intravenous injection of verteporfin and subsequent application of a non-thermal laser beam to the area of AMD to induce selective vascular occlusion. Since there is evidence that PDT may cause outer blood-retinal barrier (BRB) breakdown and possibly RPE cell alteration, we investigated the effect of PDT on the BRB function of the RPE in an in vitro model.

Methods

Twenty-one monolayers of human RPE cells were cultured on semipermeable membranes until a stable barrier function was achieved as determined by transepithelial electrical resistance (TER) and sodium fluorescein permeability. To test the effect of PDT on the outer BRB function, non-thermal laser (692 nm), verteporfin or a combination of both were applied. TER assessment prior to and after PDT was utilized to identify changes in barrier function of the RPE in this in vitro model. Finally, monolayers of RPE cells were evaluated by transmission electron microscopy (TEM).

Results

No significant TER decrease was observed after application of non-thermal laser alone or after administration of verteporfin in therapeutic concentrations, but combination of these modalities resulted in significantly decreased TER within 4 h. Except for intercellular blisters, no damage to the RPE was evident in TEM. Verteporfin added at concentrations higher than therapeutic doses (2 mg/ml) resulted in an immediate decrease in TER and damage to the RPE cells.

Conclusion

The combination of a therapeutic concentration of verteporfin and application of non-thermal laser resulted in a morphologically and functionally detectable breakdown of the outer BRB function of the RPE without any damage to the RPE cells themselves in vitro. However, increasing the concentration of verteporfin can result in RPE cell damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Blinder KJ, Bradley S, Bressler NM, Bressler SB, Donati G, Hao Y, Ma C, Menchini U, Miller J, Potter MJ, Pournaras C, Reaves A, Rosenfeld PJ, Strong HA, Stur M, Su XY, Virgili G, Treatment of Age-related Macular Degeneration with Photodynamic Therapy study group; Verteporfin in Photodynamic Therapy study group (2003) Effect of lesion size, visual acuity, and lesion composition on visual acuity change with and without verteporfin therapy for choroidal neovascularization secondary to age-related macular degeneration: TAP and VIP report no. 1. Am J Ophthalmol 136:407–418

    Article  PubMed  CAS  Google Scholar 

  2. Boscia F, Furino C, Sborgia L, Reibaldi M, Sborgia C (2004) Photodynamic therapy for retinal angiomatous proliferations and pigment epithelium detachment. Am J Ophthalmol 138:1077–1079

    Article  PubMed  Google Scholar 

  3. Burke JM, Skumatz CM, Irving PE, Mckay BS (1996) Phenotypic heterogeneity of retinal pigment epithelial cells in vitro and in situ. Exp Eye Res 62:63–73

    Article  PubMed  CAS  Google Scholar 

  4. Cantrill HL, Ramsay RC, Knobloch WH (1983) Rips in the pigment epithelium. Arch Ophthalmol 101:1074–1079

    PubMed  CAS  Google Scholar 

  5. Costa RA, Farah ME, Cardillo JA, Calucci D, Williams GA (2003) Immediate indocyanine green angiography and optical coherence tomography evaluation after photodynamic therapy for subfoveal choroidal neovascularization. Retina 23:159–165

    Article  PubMed  Google Scholar 

  6. Fingar VH (1996) Vascular effects of photodynamic therapy. J Clin Laser Med Surg 14:323–328

    PubMed  CAS  Google Scholar 

  7. Gass JD (1984) Retinal pigment epithelial rip during krypton red laser photocoagulation. Am J Ophthalmol 98:700–706

    PubMed  CAS  Google Scholar 

  8. Gelisken F, Inhoffen W, Partsch M, Schneider U, Kreissig I (2001) Retinal pigment epithelial tear after photodynamic therapy for choroidal neovascularization. Am J Ophthalmol 131:518–520

    Article  PubMed  CAS  Google Scholar 

  9. Haimovici R, Kramer M, Miller JW, Hasan T, Flotte TJ, Schomacker KT, Gragoudas ES (1997) Localization of lipoprotein-delivered benzoporphyrin derivative in the rabbit eye. Curr Eye Res 16:83–90

    Article  PubMed  CAS  Google Scholar 

  10. Hartnett ME, Lappas A, Darland D, McColm JR, Lovejoy S, D’Amore PA (2003) Retinal pigment epithelium and endothelial cell interaction causes retinal pigment epithelial barrier dysfunction via a soluble VEGF-dependent mechanism. Exp Eye Res 77:593–599

    Article  PubMed  CAS  Google Scholar 

  11. Höh H, Marzelin S, Methlin D (2004) Individualisierung der Behandlungsparameter der PDT. Klin Monatsbl Augenheilkund 221(Suppl 4):10

    Google Scholar 

  12. Husain D, Miller JW, Michaud N, Connolly E, Flotte TJ, Gragoudas ES (1996) Intravenous infusion of liposomal benzoporphyrin derivative for photodynamic therapy of experimental choroidal neovascularization. Arch Ophthalmol 114:978–985

    PubMed  CAS  Google Scholar 

  13. Jurklies B, Anastassiou G, Ortmans S, Schuler A, Schilling H, Schmidt-Erfurth U, Bornfeld N (2003) Photodynamic therapy using verteporfin in circumscribed choroidal haemangioma. Br J Ophthalmol 87:84–89

    Article  PubMed  CAS  Google Scholar 

  14. Macular Photocoagulation Study Group [No authors listed] (1991) Subfoveal neovascular lesions in age-related macular degeneration. Guidelines for evaluation and treatment in the macular photocoagulation study. Macular Photocoagulation Study Group. Arch Ophthalmol 109:1242–1257

    Google Scholar 

  15. Marmor MF (1990) Control of subretinal fluid: experimental and clinical studies. Eye 4:340–344

    PubMed  Google Scholar 

  16. Marmor MF (1999) Mechanisms of fluid accumulation in retinal edema. Doc Ophthalmol 97:239–249

    Article  PubMed  CAS  Google Scholar 

  17. Marmor MF, Yao XY (1994) Conditions necessary for the formation of serous detachment. Experimental evidence from the cat. Arch Ophthalmol 112:830–838

    PubMed  CAS  Google Scholar 

  18. Mennel S, Hausmann N, Meyer CH, Hörle S, Peter S (2005) Transient visual decrease after photodynamic therapy. Ophthalmologe 102:58–63

    Article  PubMed  CAS  Google Scholar 

  19. Mennel S, Hausmann N, Meyer CH, Peter S (2006) Photodynamic therapy in exudative hamartoma in tuberous sclerosis. Arch Ophthalmol, in press

  20. Mennel S, Meyer CH, Eggarter F, Peter S (2005) Transient serous retinal detachment in classic and occult choroidal neovascularization after photodynamic therapy. Am J Ophthalmol 140:758–760

    Article  PubMed  Google Scholar 

  21. Michels S, Schmidt-Erfurth U (2003) Sequence of early vascular events after photodynamic therapy. Invest Ophthalmol Vis Sci 44:2147–2154

    Article  PubMed  Google Scholar 

  22. Miller JW, Walsh AW, Kramer M, Hasan T, Michaud N, Flotte TJ, Haimovici R, Gragoudas ES (1995) Photodynamic therapy of experimental choroidal neovascularization using lipoprotein-delivered benzoporphyrin. Arch Ophthalmol 113:810–818

    PubMed  CAS  Google Scholar 

  23. Moorfields Macular Study Group (1982) Retinal pigment epithelial detachments in the elderly: a controlled trial of argon laser photocoagulation. Br J Ophthalmol 66:1–16

    Article  Google Scholar 

  24. Orgul S, Reuter U, Kain HL (1993) Osmotic stress in an in vitro model of the outer blood-retinal barrier. Ger J Ophthalmol 2:436–443

    PubMed  CAS  Google Scholar 

  25. Orgül S, Prünte C, Kain HL (1992) Modellexperimente zur äußeren Blut-Retina-Schranke in vitro. Ophthalmologe 89:400–404

    PubMed  Google Scholar 

  26. Pece A, Introini U, Bottoni F, Brancato R (2001) Acute retinal pigment epithelial tear after photodynamic therapy. Retina 21:661–665

    Article  PubMed  CAS  Google Scholar 

  27. Postelmans L, Pasteels B, Coquelet P, El Ouardighi H, Verougstraete C, Schmidt-Erfurth U (2004) Severe pigment epithelial alterations in the treatment area following photodynamic therapy for classic choroidal neovascularization in young females. Am J Ophthalmol 138:803–808

    Article  PubMed  Google Scholar 

  28. Raviola G (1977) The structural basis of the blood-ocular barriers. Exp Eye Res 25(Suppl):27–63

    Article  PubMed  Google Scholar 

  29. Rogers AH, Martidis A, Greenberg PB, Puliafito CA (2002) Optical coherence tomography findings following photodynamic therapy of choroidal neovascularization. Am J Ophthalmol 134:566–576

    Article  PubMed  Google Scholar 

  30. Rudolf M, Michels S, Schlotzer-Schrehardt U, Schmidt-Erfurth U (2004) Expression of angiogenic factors by photodynamic therapy. Klin Monatsbl Augenheilkd 221:1026–1032

    Article  PubMed  CAS  Google Scholar 

  31. Schmidt-Erfurth U, Hasan T, Gragoudas E, Michaud N, Flotte TJ, Birngruber R (1994) Vascular targeting in photodynamic occlusion of subretinal vessels. Ophthalmology 101:1953–1961

    PubMed  CAS  Google Scholar 

  32. Schmidt-Erfurth U, Hasan T, Schomacker K, Flotte T, Birngruber R (1995) In vivo uptake of liposomal benzoporphyrin derivative and photothrombosis in experimental corneal neovascularization. Lasers Surg Med 17:178–188

    Article  PubMed  CAS  Google Scholar 

  33. Schmidt-Erfurth U, Kusserow C, Barbazetto IA, Laqua H (2002) Benefits and complications of photodynamic therapy of papillary capillary hemangiomas. Ophthalmology 109:1256–1266

    Article  PubMed  Google Scholar 

  34. Schmidt-Erfurth U, Laqua H, Schlotzer-Schrehard U, Viestenz A, Naumann GO (2002) Histopathological changes following photodynamic therapy in human eyes. Arch Ophthalmol 120:835–844

    PubMed  Google Scholar 

  35. Schnurrbusch UEK, Welt K, Horn L-C, Wiedemann P, Wolf S (2001) Histological findings of surgically excised choroidal neovascular membranes after photodynamic therapy. Br J Ophthalmol 85:1086–1091

    Article  PubMed  CAS  Google Scholar 

  36. Srivastava SK, Sternberg P (2002) Retinal pigment epithelial tear weeks following photodynamic therapy with verteporfin for choroidal neovascularization secondary to pathologic myopia. Retina 22:669–671

    Article  PubMed  Google Scholar 

  37. Treatment of Age-related Macular Degeneration with Photodynamic Therapy (TAP) Study Group (1999) Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: one-year result of 2 randomized clinical trials–TAP report. Arch Ophthalmol 117:1329–1345

    Google Scholar 

  38. Wachtlin J, Behme T, Heimann H, Kellner U, Foerster MH (2003) Concentric retinal pigment epithelium atrophy after a single photodynamic therapy. Graefe’s Arch Clin Exp Ophthalmol 241:518–521

    Article  Google Scholar 

  39. Yannuzzi LA, Slakter JS, Gross NE, Spaide RF, Costa DL, Huang SJ, Klancnik JM Jr, Aizman A (2003) Indocyanine green angiography-guided photodynamic therapy for treatment of chronic central serous chorioretinopathy: a pilot study. Retina 23:288–298

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Professor Dr. K. Addicks (Chair of the Department of Anatomy I, University of Cologne) for the use of electron microscopy facilities and for his help in the interpretation of the electron microscopy images. We thank Beatrix Martiny (Laboratory for Experimental Ophthalmology, University of Cologne) for her assistance in the culture of retinal pigment epithelium cells, and M. Kat Occhipinti-Bender for editorial help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Mennel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mennel, S., Peter, S., Meyer, C.H. et al. Effect of photodynamic therapy on the function of the outer blood-retinal barrier in an in vitro model. Graefe's Arch Clin Exp Ophthalmo 244, 1015–1021 (2006). https://doi.org/10.1007/s00417-005-0237-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-005-0237-7

Keywords

Navigation