Skip to main content

Advertisement

Log in

Cerebral perfusion correlates of conversion to Alzheimer's disease in amnestic mild cognitive impairment

  • ORIGINAL COMMUNICATION
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Objective

Aim of this study was to find cerebral perfusion correlates of conversion to dementia in patients with amnestic MCI.

Methods

17 healthy subjects (age = 69 ± 3, 9 females), and 23 amnestic MCI patients (age = 70 ± 6, 10 females) underwent brain MR scan and 99mTc ECD SPECT. Conversion to AD was ascertained on average 19 ± 10 months after baseline: 9 had converted (age = 69 ± 3, 4 females), and 14 had not (age = 71 ± 8, 6 females). We processed SPECT images with SPM2 following an optimized protocol and performed a voxel-based statistical analysis comparing amnestic MCI patients converted to AD and non-converted to dementia vs controls. We assessed the effect of gray matter atrophy on the above results with SPM2 using an optimized Voxel-Based Morphometry (VBM) protocol.We compared significant hypoperfusion with significant atrophy on a voxel-byvoxel basis.

Results

In comparison with normal controls, amnestic MCI patients who converted to AD showed hypoperfusion in the right parahippocampal gyrus and left inferior temporal and fusiform gyri,whereas those who did not convert showed hypoperfusion in the retrosplenial cortex, precuneus and occipital gyri, mainly on the left side.We found no overlap between significant atrophy and significant hypoperfusion regions.

Conclusions

Parahippocampal and inferior temporal hypoperfusion in amnestic MCI patients appears as a correlate of conversion to AD; hypoperfusion in the retrosplenial cortex is involved in memory impairment but does not seem the key prognostic indicator of conversion to dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E (1999) Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 56:303–308

    Article  PubMed  CAS  Google Scholar 

  2. Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, Ritchie K, Rossor M, Thal L, Winblad B (2001) Current concepts in mild cognitive impairment. Arch Neurol 58:1985–1992

    Article  PubMed  CAS  Google Scholar 

  3. Flicker C, Ferris SH, Reisberg B (1991) Mild cognitive impairment in the elderly: predictors of dementia. Neurology 41:1006–1009

    PubMed  CAS  Google Scholar 

  4. Visser PJ, Kester A, Jolles J, Verhey F (2006) Ten-year risk of dementia in subjects with mild cognitive impairment. Neurology 67:1201–1207

    Article  PubMed  Google Scholar 

  5. Bennett DA, Wilson RS, Schneider JA, Evans DA, Beckett LA, Aggarwal NT, Barnes LL, Fox JH, Back J (2002) Natural history of mild cognitive impairment in older persons. Neurology 59:198–205

    PubMed  CAS  Google Scholar 

  6. Larrieu S, Letenneur L, Orgogozo JM, Fabrigoule C, Amieva H, Le Carret N, Barberger-Gateau P, Dartigues JF (2002) Incidence and outcomes of mild cognitive impairment in a populationbased prospective cohort. Neurology 59:1594–1599

    PubMed  CAS  Google Scholar 

  7. Small AS (2005) Alzheimer disease, in living color. Nat Neurosci 8:404–405

    Article  PubMed  CAS  Google Scholar 

  8. Benson DF, Kuhl DE, Hawkins RA, Phelps ME, Cummings JL, Tsai SY (1983) The fluorodeoxyglucose 18F scan in Alzheimer's disease and multiinfarct dementia. Arch Neurol 40:711–714

    PubMed  CAS  Google Scholar 

  9. Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE (1997) Metabolic reduction in the posterior cingulated cortex in very early Alzheimer's disease. Ann Neurol 42:85–94

    Article  PubMed  CAS  Google Scholar 

  10. Cabranes JA, De Juan R, Encinas M, Marcos A, Gil P, Fernandez C, De Ugarte C, Barabash A (2004) Relevance of functional neuroimaging in the progression of mild cognitive impairment. Neurol Res 26:496–501

    Article  PubMed  Google Scholar 

  11. Encinas M, De Juan R, Marcos A, Gil P, Barabash A, Fernandez C, De Ugarte C, Cabranes JA (2003) Regional cerebral blood flow assessed with 99mTc-ECD SPET as a marker of progression of mild cognitive impairment to Alzheimer's disease. Eur J Nucl Med Mol Imaging 30:1473–1480

    Article  PubMed  Google Scholar 

  12. Chetelat G, Desgranges B, De La Sayette V, Viader F, Eustache F, Baron JC (2003) Mild cognitive impairment: Can FDG-PET predict who is to rapidly convert to Alzheimer's disease? Neurology 60:1374–1377

    PubMed  CAS  Google Scholar 

  13. Hirao K, Ohnishi T, Hirata Y, Yamashita F, Mori T, Moriguchi Y, Matsuda H, Nemoto K, Imabayashi E, Yamada M, Iwamoto T, Arima K, Asada T (2005) The prediction of rapid conversion to Alzheimer's disease in mild cognitive impairment using regional cerebral blood flow SPECT. Neuroimage 28:1014–1021

    Article  PubMed  Google Scholar 

  14. Huang C, Wahlund LO, Svensson L, Winblad B (2002) Cingulate cortex hypoperfusion predicts Alzheimer's disease in mild cognitive impairment. BMC Neurol 2:9–14

    Article  PubMed  Google Scholar 

  15. Ishiwata A, Sakayori O, Minoshima S, Mizumura S, Kitamura S, Katayama Y (2006) Preclinical evidence of Alzheimer changes in progressive mild cognitive impairment: a qualitative and quantitative SPECT study. Acta Neurol Scand 114:91–96

    Article  PubMed  CAS  Google Scholar 

  16. Anchisi D, Borroni B, Franceschi M, Kerrouche N, Kalbe E, Beuthien-Beumann B, Cappa S, Lenz O, Ludecke S, Marcone A, Miele R, Ortelli P, Padovani A, Pelati O, Pupi A, Scarpini E, Weisenbach S, Herholz K, Salmon E, Holthoff V, Sorbi S, Fazio F, Perani D (2005) Heterogeneity of Brain Glucose Metabolism in Mild Cognitive Impairment and Clinical Progression to Alzheimer Disease. Arch Neurol 62:1728–1733

    Article  PubMed  Google Scholar 

  17. Drzezga A, Lautenschlager N, Siebner H, Riemenschneider M, Willoch F, Minoshima S, Schwaiger M, Kurz A (2003) Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer's disease: a PET follow-up study. Eur J Nucl Med Mol Imaging 30:1104–1113

    Article  PubMed  Google Scholar 

  18. Borroni B, Anchisi D, Paghera B, Vicini B, Kerrouche N, Garibotto V, Terzi A, Vignolo LA, Di Luca M, Giubbini R, Padovani A, Perani D (2006) Combined 99mTc-ECD SPECT and neuropsychological studies in MCI for the assessment of conversion to AD. Neurobiol Aging 27:24–31

    Article  PubMed  CAS  Google Scholar 

  19. Shulman KI (2000) Clock-drawing: is it the ideal cognitive screening test? Int J Geriatr Psychiatry 15:548–561

    Article  PubMed  CAS  Google Scholar 

  20. Giovagnoli AR, Del Pesce M, Mascheroni S, Simoncelli M, Laiacona M, Capitani E (1996) Trail making test: normative values from 287 normal adult controls. Ital J Neurol Sci 17:305–309

    Article  PubMed  CAS  Google Scholar 

  21. Basso A, Capitani E, Laiacona M (1987) Raven's coloured progressive matrices: normative values on 305 adult normal controls. Funct Neurol 2:189–194

    PubMed  CAS  Google Scholar 

  22. Spinnler H, Tognoni G (1987) Standardizzazione e taratura italiana di test neurologici. Ital J Neurol Sci 8(Suppl):47–50

    Google Scholar 

  23. Novelli G, Papagno C, Capitani E, Laiacona M, Cappa SF, Vallar G (1986) Tre test clinici di ricerca e produzione lessicale. Taratura su soggetti normali. Arch Psicol Neurol Psichiatr 47:477–506

    Google Scholar 

  24. Caffarra P, Vezzadini G, Dieci F, Zonato F, Venneri A (2002) Rey-Osterrieth complex figure: normative values in an Italian population sample. Neurol Sci 22:443–447

    Article  PubMed  CAS  Google Scholar 

  25. Radloff LS (1997) The CES-D scale: A self-report depression scale for research in the general population. Appl Psychol Measure 1:385–401

    Article  Google Scholar 

  26. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 34:939–944

    PubMed  CAS  Google Scholar 

  27. Erkinjuntti T, Inzitari D, Pantoni L, Wallin A, Scheltens P, Rockwood K, Roman GC, Chui H, Desmond DW (2000) Research criteria for subcortical vascular dementia in clinical trials. J Neural Transm Suppl 59:23–30

    PubMed  CAS  Google Scholar 

  28. McKeith IG, Ballard CG, Perry RH, Ince PG, O'Brien JT, Neill D, Lowery K, Jaros E, Barber R, Thomson P, Swann A, Fairbairn AF, Perry EK (2000) Prospective validation of consensus criteria for the diagnosis of dementia with Lewy bodies. Neurology 54:1050–1058

    PubMed  CAS  Google Scholar 

  29. Knopman DS, Boeve BF, Parisi JE, Dickson DW, Smith GE, Ivnik RJ, Josephs KA, Petersen RC (2005) Antemortem Diagnosis of Frontotemporal Lobar Degeneration. Ann Neurol 57:480–488

    Article  PubMed  Google Scholar 

  30. Riello R, Sabattoli F, Beltramello A, Bonetti M, Bono G, Falini A, Magnani G, Minonzio G, Piovan E, Alaimo G, Ettori M, Galluzzi S, Locatelli E, Noiszewska M, Testa C, Frisoni GB (2005) Brain volumes in healthy adults aged 40 years and over: a voxel based morphometry study. Aging Clin Exp Res 17:329–336

    PubMed  Google Scholar 

  31. Caroli A, Testa C, Geroldi C, Nobili F, Guerra UP, Bonetti M, Frisoni GB (2007) Brain perfusion correlates of medial temporal lobe atrophy and white matter hyperintensities in mild cognitive impairment. J Neurol, epub ahead of print

  32. Rorden C, Brett M (2000): Stereotaxic display of brain lesions. Behav Neurol 12:191–200

    PubMed  Google Scholar 

  33. SPM, Statistical Parametric Mapping, version 2 (2002). London: Functional Imaging Laboratory. Available at: http://www. fil. ion. ucl. ac. uk/spm/ software/spm2

  34. Frisoni GB, Testa C, Sabattoli F, Beltramello A, Soininen H, Laakso MP (2005) Structural correlates of early and late onset Alzheimer's disease: voxel based morphometric study. J Neurol Neurosurg Psychiatry 76:112–114

    Article  PubMed  CAS  Google Scholar 

  35. Filippini N, Scassellati C, Boccardi M, Pievani M, Testa C, Bocchio-Chiavetto L, Frisoni GB, Gennarelli M (2006) Influence of serotonin receptor 2A His452Tyr polymorphism on brain temporal structures: a volumetric MR study. Eur J Hum Genet 14:443–449

    Article  PubMed  CAS  Google Scholar 

  36. DISPLAY. Brain Imaging Center – Montreal Neurological Institute. Available at: http://www. bic. mni. mcgill. ca/software

  37. Friston KJ, Worsley KJ, Frackowiak RSJ, Mazziotta JC, Evans AC (1994) Assessing the significance of focal activations using their spatial extent. Hum Brain Mapp 1:214–220

    Article  Google Scholar 

  38. Carlesimo GA, Marfia GA, Loasses A, Caltagirone C (1996) Recency effect in anterograde amnesia: evidence for distinct memory stores underlying enhanced retrieval of terminal items in immediate and delayed recall paradigms. Neuropsychologia 34:177–184

    Article  PubMed  CAS  Google Scholar 

  39. Braak H, Braak E (1998) Evolution of neuronal changes in the course of Alzheimer's disease. J Neural Transm Suppl 53:127–140

    PubMed  CAS  Google Scholar 

  40. Pennanen C, Kivipelto M, Tuomainen S, Hartikainen P, Hanninen T, Laakso MP, Hallikainen M, Vanhanen M, Nissinen A, Helkala EL, Vainio P, Vanninen R, Partanen K, Soininen H (2004) Hippocampus and entorhinal cortex in mild cognitive impairment and early AD. Neurobiol Aging 25:303–310

    Article  PubMed  Google Scholar 

  41. Baron JC, Chetelat G, Desgranges B, Perchey G, Landeau B, de la Sayette V, Eustache F (2001) In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer's disease. Neuroimage 14:298–309

    Article  PubMed  CAS  Google Scholar 

  42. Rombouts SA, Barkhof F, Witter MP, Scheltens P (2000) Unbiased wholebrain analysis of gray matter loss in Alzheimer's disease. Neurosci Lett 285:231–233

    Article  PubMed  CAS  Google Scholar 

  43. Ohnishi T, Matsuda H, Tabira T, Asada T, Uno M (2001) Changes in brain morphology in Alzheimer disease and normal ageing: is Alzheimer disease an exaggerated aging process? Am J Neuroradiol 22:1680–1685

    PubMed  CAS  Google Scholar 

  44. Mosconi L (2005) Brain glucose metabolism in the early and specific diagnosis of Alzheimer's disease. Eur J Nucl Med Mol Imaging 32:486–510

    Article  PubMed  CAS  Google Scholar 

  45. Dik MG, Jonker C, Bouter LM, Geerlings MI, van Kamp GJ, Deeg DJ (2000) APOE-epsilon4 is associated with memory decline in cognitively impaired elderly. Neurology 54:1492–1497

    PubMed  CAS  Google Scholar 

  46. Bretsky P, Guralnik JM, Launer L, Albert M, Seeman TE; MacArthur Studies of Successful Aging (2003) The role of APOE-epsilon4 in longitudinal cognitive decline:MacArthur Studies of Successful Aging. Neurology 60:1077–1081

    PubMed  CAS  Google Scholar 

  47. Ye S, Huang Y, Mullendorff K, Dong L, Giedt G, Meng EC, Cohen FE, Kuntz ID, Weisgraber KH, Mahley RW (2005) Apolipoprotein (apo) E4 enhances amyloid β peptide production in cultured neuronal cells: ApoE structure as a potential therapeutic target. PNAS 102:18700–18705

    Article  PubMed  CAS  Google Scholar 

  48. Corbo RM, Scacchi R (1999) Apolipoprotein E (APOE) allele distribution in the world. Is APOE*4 a ‘thrifty' allele? Ann Hum Genet 63:301–310

    Article  PubMed  CAS  Google Scholar 

  49. Ranganath C, Heller A, Cohen MX, Brozinsky CJ, Rissman J (2005) Functional connectivity with the hippocampus during successful memory formation. Hippocampus 15:997–1005

    Article  PubMed  Google Scholar 

  50. Jack CR Jr, Petersen RC, Xu YC, O'Brien PC, Smith GE, Ivnik RJ, Boeve BF, Waring SC, Tangalos EG, Kokmen E (1999) Prediction of AD with MRIbased hippocampal volume in mild cognitive impairment. Neurology 52:1397–1403

    PubMed  Google Scholar 

  51. Riemenschneider M, Lautenschlager N, Wagenpfeil S, Diehl J, Drzezga A, Kurz A (2002) Cerebrospinal fluid tau and beta-amyloid 42 proteins identify Alzheimer disease in subjects with mild cognitive impairment. Arch Neurol 59:1729–1734

    Article  PubMed  CAS  Google Scholar 

  52. Okamura N, Arai H, Maruyama M, Higuchi M, Matsui T, Tanji H, Seki T, Hirai H, Chiba H, Itoh M, Sasaki H (2002) Combined analysis of CSF Tau levels and [123I]Iodoamphetamine SPECT in mild cognitive impairment: implications for a novel predictor of Alzheimer's disease. Am J Psychiatry 159:474–476

    Article  PubMed  Google Scholar 

  53. Modrego PJ (2006) Predictors of conversion to dementia of probable Alzheimer type in patients with mild cognitive impairment. Curr Alzheimer Res 3:161–170

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Frisoni MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caroli, A., Testa, C., Geroldi, C. et al. Cerebral perfusion correlates of conversion to Alzheimer's disease in amnestic mild cognitive impairment. J Neurol 254, 1698–1707 (2007). https://doi.org/10.1007/s00415-007-0631-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-007-0631-7

Key words

Navigation