Skip to main content
Log in

Functional involvement of cerebral cortex in adult sleepwalking

  • ORIGINAL COMMUNICATION
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

The pathophysiology of adult sleepwalking is still poorly understood. However, it is widely accepted that sleepwalking is a disorder of arousal. Arousal circuits widely project to the cortex, including motor cortex. We hypothesized that functional abnormality of these circuits could lead to changes in cortical excitability in sleepwalkers, even during wakefulness. We used transcranial magnetic stimulation (TMS) to examine the excitability of the human motor cortex during wakefulness in a group of adult sleepwalkers. When compared with the healthy control group, short interval intracortical inhibition (SICI), cortical silent period (CSP) duration, and short latency afferent inhibition (SAI) were reduced in adult sleepwalkers during wakefulness. Mean CSP duration was shorter in patients than in controls (80.9 ± 41 ms vs. 139.4 ± 37 ms; p = 0.0040). Mean SICI was significantly reduced in patients than in controls (73.5 ± 38.4% vs. 36.7 ± 13.1%; p = 0.0061). Mean SAI was also significantly reduced in patients than in controls (65.8 ± 14.2% vs. 42.8 ± 16.9%; p = 0.0053). This neurophysiological study suggests that there are alterations in sleepwalkers consistent with an impaired efficiency of inhibitory circuits during wakefulness. This inhibitory impairment could represent the neurophysiological correlate of brain “abnormalities” of sleepwalkers like “immaturity” of some neural circuits, synapses, or receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. International Classification of Sleep Disorders (2005) Diagnostic and coding manual, revised. American Academy of Sleep Medicine, Rochester, MN

  2. Gaudreau H, Joncas S, Zadra A, Montplaisir J (2000) Dynamics of slowwave activity during the NREM sleep of sleepwalkers and control subjects. Sleep 23(6):755–60

    CAS  PubMed  Google Scholar 

  3. Jones BE (2003) Arousal systems. Front Biosci 8:s438–51

    Article  CAS  PubMed  Google Scholar 

  4. Bassetti C, Vella S, Donati F, Wielepp P, Weder B (2000) SPECT during sleepwalking. Lancet 356(9228):484–85

    Article  CAS  PubMed  Google Scholar 

  5. Hallett M (2000) Transcranial magnetic stimulation and the human brain. Nature 406:147–50

    Article  CAS  PubMed  Google Scholar 

  6. Ziemann U, Lonnecker S, Steinhoff BJ, Paulus W (1996) Effects of antiepileptics drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study. Ann Neurol 40:367–78

    Article  CAS  PubMed  Google Scholar 

  7. Rossini PM, Barker AT, Berardelli A, Caramia MD, Caruso G, Cracco RQ, Dimitrijevic MR, Hallett M, Katayama Y, Lucking CH (1994) Noninvasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application Report of an IFCN committee. Electroencephalogr Clin Neurophysiol 91:79–2

    Article  CAS  PubMed  Google Scholar 

  8. Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, Wroe S, Asselman P, Marsden CD (1993) Corticocortical inhibition in human motor cortex. J Physiol 471:501–19

    CAS  PubMed  Google Scholar 

  9. Ziemann U, Chen R, Cohen LG, Hallett M (1998) Dextromethorphan decreases the excitability of the human motor cortex. Neurology 51:1320–324

    CAS  PubMed  Google Scholar 

  10. Di Lazzaro V, Oliviero A, Profice P, Pennisi MA, Di Giovanni S, Zito G, Tonali P, Rothwell JC (2000) Muscarinic receptor blockade has differential effects on the excitability of intracortical circuits in the human motor cortex. Exp Brain Res 135:455–61

    Article  CAS  PubMed  Google Scholar 

  11. Oliviero A, Molina-Leon A, Holler I, Florensa-Vila J, Siebner HR, Della Marca G, Di Lazzaro V, Teijeira-Alvarez J (2005) Reduced sensorimotor inhibition in the ipsilesional motor cortex in a patient with chronic stroke of the paramedian thalamus. Clinical Neurophysiol. 116(11):2592–598

    Article  CAS  Google Scholar 

  12. Di Lazzaro V, Oliviero A, Meglio M, Cioni B, Tamburrini G, Tonali P, Rothwell JC (2000) Direct demonstration of the effect of lorazepam on the excitability of the human motor cortex. Clin Neurophysiol 111:794–99

    Article  CAS  PubMed  Google Scholar 

  13. Werhahn KJ, Kunesch E, Noachtar S, Benecke R, Classen J (1999) Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans. J Physiol 517(Pt 2):591–97

    Article  CAS  PubMed  Google Scholar 

  14. Sanger TD, Garg RR, Chen R (2001) Interactions between two different inhibitory systems in the human motor cortex. J Physiol 530:307–17

    Article  CAS  PubMed  Google Scholar 

  15. Di Lazzaro V, Oliviero A, Tonali PA, Marra C, Daniele A, Profice P, Saturno E, Pilato F, Masullo C, Rothwell JC (2002) Noninvasive in vivo assessment of cholinergic cortical circuits in AD using transcranial magnetic stimulation. Neurology 59(3):392–97

    PubMed  Google Scholar 

  16. Timofeev I, Grenier F, Steriade M (2001) Disfacilitation and active inhibition in the neocortex during the natural sleep-wake cycle: an intracellular study. PNAS 98:1924–929

    Article  CAS  PubMed  Google Scholar 

  17. Salih F, Khatami R, Steinheimer S, Hummel O, Kuhn A, Grosse P (2005) Inhibitory and excitatory intracortical circuits across the human sleep-wake cycle using paired-pulse TMS. J Physiol 565:695–01

    Article  CAS  PubMed  Google Scholar 

  18. Sohn YH, Wiltz K, Hallett M (2002). Effect of volitional inhibition on cortical inhibitory mechanisms. J Neurophysiol 88(1):333–38

    PubMed  Google Scholar 

  19. Jasper HH, Tessier J (1971) Acetylcholine liberation from cerebral cortex during paradoxical (REM) sleep. Science 172(983):601–02

    Article  CAS  PubMed  Google Scholar 

  20. Steriade M (2004) Acetylcholine systems and rhythmic activities during the waking-sleep cycle. Prog Brain Res. 145:179–96

    Article  CAS  PubMed  Google Scholar 

  21. Bliwise DL (2004) Sleep disorders in Alzheimer's disease and other dementias. Clin Cornerstone 6(Suppl 1A):S16–8

    Article  PubMed  Google Scholar 

  22. Di Lazzaro V, Oliviero A, Saturno E, Dileone M, Pilato F, Nardone R, Ranieri F, Musumeci G, Fiorilla T, Tonali P (2005) Effects of lorazepam on short latency afferent inhibition and short latency intracortical inhibition in humans. J Physiol 564(Pt 2):661–68

    Article  CAS  PubMed  Google Scholar 

  23. Di Lazzaro V, Pilato F, Dileone M, Tonali PA, Ziemann U (2005) Dissociated effects of diazepam and lorazepam on short-latency afferent inhibition. J Physiol 569(Pt 1):315–23

    Article  CAS  PubMed  Google Scholar 

  24. Chugani DC, Muzik O, Juhasz C, Janisse JJ, Ager J, Chugani HT (2001) Postnatal maturation of human GABAA receptors measured with positron emission tomography. Ann Neurol 49(5):618–26

    Article  CAS  PubMed  Google Scholar 

  25. Hutcheon B, Morley P, Poulter MO (2000) Developmental change in GABAA receptor desensitization kinetics and its role in synapse function in rat cortical neurons. J Physiol 522:3–7

    Article  CAS  PubMed  Google Scholar 

  26. Civardi C, Boccagni C, Vicentini R, Bolamperti L, Tarletti R, Varrasi C, Monaco F, Cantello R (2001) Cortical excitability and sleep deprivation: a transcranial magnetic stimulation study. J Neurol Neurosurg Psychiatry 71(6):809–12

    Article  CAS  PubMed  Google Scholar 

  27. Ziemann U, Tergau F, Bruns D, Baudewig J, Paulus W (1997) Changes in human motor cortex excitability induced by dopaminergic and antidopaminergic drugs. Electroencephalogr Clin Neurophysiol 105(6):430–37

    Article  CAS  PubMed  Google Scholar 

  28. Charney DS, Kales A, Soldatos CR, Nelson JC (1979) Somnambulistic-like episodes secondary to combined lithium-neuroleptic treatment. Br J Psychiatry 135:418–24

    Article  CAS  PubMed  Google Scholar 

  29. Joncas S, Zadra A, Paquet J, Montplaisir J (2002) The value of sleep deprivation as a diagnostic tool in adult sleepwalkers. Neurology. 58:936–40

    PubMed  Google Scholar 

  30. Kolivakis TT, Margolese HC, Beauclair L, Chouinard G (2001) Olanzapine-induced somnambulism. Am J Psychiatry 158:1158

    Article  CAS  PubMed  Google Scholar 

  31. Orth M, Amann B, Robertson MM, Rothwell JC (2005). Excitability of motor cortex inhibitory circuits in Tourette syndrome before and after single dose nicotine. Brain 128:1292–300

    Article  CAS  PubMed  Google Scholar 

  32. Barabas G, Matthews WS (1985) Homogeneous clinical subgroups in children with Tourette syndrome. Pediatrics 75:73–5

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Oliviero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliviero, A., Della Marca, G., Tonali, P.A. et al. Functional involvement of cerebral cortex in adult sleepwalking. J Neurol 254, 1066–1072 (2007). https://doi.org/10.1007/s00415-006-0489-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-006-0489-0

Key words

Navigation