Skip to main content
Log in

Combined MR spectroscopic imaging and diffusion tensor MRI visualizes corticospinal tract degeneration in amyotrophic lateral sclerosis

  • ORIGINAL COMMUNICATION
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract.

Motor neuron damage and cortical spinal tract (CST) degeneration are pathological features of amyotrophic lateral sclerosis (ALS). We combined whole-brain diffusion tensor imaging (DTI) and three-dimensional magnetic resonance spectroscopic imaging (MRSI) to study the CST at different locations. Eight ALS patients were compared with normal controls. Fractional anisotropy (FA) and mean diffusivity (MD), and the ratio of N-acetyl-aspartate (NAA) to creatine (Cr) were measured at various locations in the CST, including the subcortical white matter (SWM), centrum semiovale (CS), periventricular white matter (PV), posterior limb of the internal capsule (PIC) and cerebral peduncle (CP). Patients showed significantly lower FA than controls in the CST, including the SWM, CS, PV and PIC. Although there was a trend towards elevated MD in ALS patients, this did not reach statistical significance. NAA/Cr ratios were also decreased in ALS patients compared with normal controls, with significant differences in the SWM and PV but not in PIC. Combined whole-brain DTI and MRSI can detect axonal degeneration in ALS. Measurements of FA obtained in the SWM, CS, PV and PIC, and NAA/Cr ratios in the SWM and PV yield the most robust results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leigh PN (1993) Pathogenic mechanisms in amyotrophic lateral sclerosis and other motor neuron disorders. In: Calne DB, ed. Neurodegenerative Diseases. Philadelphia: Sannders, pp473–488

  2. Hirano A (1991) Cytopathology of amyotrophic lateral sclerosis. Adv Neurol 56:91–101

    CAS  PubMed  Google Scholar 

  3. Brooks BR (1994) El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. Subcommittee on Motor Neuron Diseases/Amyotrophic Lateral Sclerosis of the World Federation of Neurology Research Group on Neuromuscular Diseases and the El Escorial “Clinical limits of amyotrophic lateral sclerosis” workshop contributors. J Neurol Sci 124(Suppl):96–107

    Article  PubMed  Google Scholar 

  4. Brooks BR, Miller RG, Swash M, Munsat TL (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:293–299

    Article  CAS  PubMed  Google Scholar 

  5. Goodin DS, Rowley HA, Olney RK (1988) Magnetic resonance imaging in amyotrophic lateral sclerosis. Ann Neurol 23:418–420

    CAS  PubMed  Google Scholar 

  6. Oba H, Araki T, Ohtomo K, Monzawa S, Uchiyama G, Koizumi K, Nogata Y, Kachi K, Shiozawa Z, Kobayashi M (1993) Amyotrophic lateral sclerosis: T2 shortening in motor cortex at MR imaging. Radiology 189:843–846

    CAS  PubMed  Google Scholar 

  7. Cheung G, Gawel MJ, Cooper PW, Farb RI, Ang LC, Gawal MJ (1995) Amyotrophic lateral sclerosis: correlation of clinical and MR imaging findings. Radiology 194:263–270

    CAS  PubMed  Google Scholar 

  8. Hofmann E, Ochs G, Pelzl A, Warmuth-Metz M (1998) The corticospinal tract in amyotrophic lateral sclerosis: an MRI study. Neuroradiology 40:71–75

    Article  CAS  PubMed  Google Scholar 

  9. Bowen BC, Pattany PM, Bradley WG, Murdoch JB, Rotta F, Younis AA, Duncan RC, Quencer RM (2000) MR imaging and localized proton spectroscopy of the precentral gyrus in amyotrophic lateral sclerosis. AJNR Am J Neuroradiol 21:647–658

    CAS  PubMed  Google Scholar 

  10. Gredal O, Rosenbaum S, Topp S, Karlsborg M, Strange P, Werdelin L (1997) Quantification of brain metabolites in amyotrophic lateral sclerosis by localized proton magnetic resonance spectroscopy. Neurology 48:878–881

    CAS  PubMed  Google Scholar 

  11. Pohl C, Block W, Traber F, Schmidt S, Pels H, Grothe C, Schild HH, Klockgether T (2001) Proton magnetic resonance spectroscopy and transcranial magnetic stimulation for the detection of upper motor neuron degeneration in ALS patients. J Neurol Sci 190:21–27

    Article  CAS  PubMed  Google Scholar 

  12. Pioro EP, Antel JP, Cashman NR, Arnold DL (1994) Detection of cortical neuron loss in motor neuron disease by proton magnetic resonance spectroscopic imaging in vivo. Neurology 44:1933–1938

    CAS  PubMed  Google Scholar 

  13. Block W, Karitzky J, Traber F, Pohl C, Keller E, Mundegar RR, Lamerichs R, Rink H, Ries F, Schild HH, Jerusalem F (1998) Proton magnetic resonance spectroscopy of the primary motor cortex in patients with motor neuron disease: subgroup analysis and follow-up measurements. Arch Neurol 55:931–936

    Article  CAS  PubMed  Google Scholar 

  14. Ellis CM, Simmons A, Andrews C, Dawson JM, Williams SC, Leigh PN (1998) A proton magnetic resonance spectroscopic study in ALS: correlation with clinical findings. Neurology 51:1104–1109

    CAS  PubMed  Google Scholar 

  15. Pioro EP, Majors AW, Mitsumoto H, Nelson DR, Ng TC (1999) 1H-MRS evidence of neurodegeneration and excess glutamate+glutamine in ALS medulla. Neurology 53:71–79

    CAS  PubMed  Google Scholar 

  16. Chan S, Shungu DC, Douglas-Akinwande A, Lange DJ, Rowland LP (1999) Motor neuron diseases: comparison of single-voxel proton MR spectroscopy of the motor cortex with MR imaging of the brain. Radiology 212:763–769

    CAS  PubMed  Google Scholar 

  17. Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRIJ Magn Reson B 111:209–219

    CAS  Google Scholar 

  18. Pierpaoli C, Basser PJ (1996) Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 36:893–906

    CAS  PubMed  Google Scholar 

  19. Werring DJ, Toosy AT, Clark CA, Parker GJ, Barker GJ, Miller DH, Thompson AJ (2000) Diffusion tensor imaging can detect and quantify corticospinal tract degeneration after stroke. J Neurol Neurosurg Psychiatry 69:269–272

    Article  CAS  PubMed  Google Scholar 

  20. Ciccarelli O, Werring DJ, Wheeler-Kingshott CA, Barker GJ, Parker GJ, Thompson AJ, Miller DH (2001) Investigation of MS normal-appearing brain using diffusion tensor MRI with clinical correlations. Neurology 56:926–933

    CAS  PubMed  Google Scholar 

  21. Mori S, Frederiksen K, van Zijl PC, Stieltjes B, Kraut MA, Solaiyappan M, Pomper MG (2002) Brain white matter anatomy of tumor patients evaluated with diffusion tensor imaging. Ann Neurol 51:377–380

    Article  PubMed  Google Scholar 

  22. Ellis CM, Simmons A, Jones DK, Bland J, Dawson JM, Horsfield MA, Williams SC, Leigh PN (1999) Diffusion tensor MRI assesses corticospinal tract damage in ALS. Neurology 53:1051–1058

    CAS  PubMed  Google Scholar 

  23. Toosy AT, Werring DJ, Orrell RW, Howard RS, King MD, Barker GJ, Miller DH, Thompson AJ (2003) Diffusion tensor imaging detects corticospinal tract involvement at multiple levels in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 74:1250–1257

    Article  CAS  PubMed  Google Scholar 

  24. Jacob S, Finsterbusch J, Weishaupt JH, Khorram-Sefat D, Frahm J, Ehrenreich H (2003) Diffusion tensor imaging for long-term follow-up of corticospinal tract degeneration in amyotrophic lateral sclerosis. Neuroradiology 45:598–600

    Article  CAS  PubMed  Google Scholar 

  25. Shaw PJ, Ince PG, Falkous G, Mantle D (1995) Oxidative damage to protein in sporadic motor neuron disease spinal cord. Ann Neurol 38:691–695

    CAS  PubMed  Google Scholar 

  26. Trotti D, Rolfs A, Danbolt NC, Brown RH Jr, Hediger MA (1999) SOD1 mutants linked to amyotrophic lateral sclerosis selectively inactivate a glialglutamate transporter. Nat Neurosci 2:427–433

    Article  CAS  PubMed  Google Scholar 

  27. Hecht MJ, Fellner F, Fellner C, Hilz MJ, Heuss D, Neundorfer B (2001) MRIFLAIR images of the head show corticospinal tract alterations in ALS patients more frequently than T2-, T1- and proton-density-weighted images. J Neurol Sci 186:37–44

    Article  CAS  PubMed  Google Scholar 

  28. Zhang L, Ulug AM, Zimmerman RD, Lin MT, Rubin M, Beal MF (2003) The diagnostic utility of FLAIR imaging in clinically verified amyotrophic lateral sclerosis. J Magn Reson Imaging 17:521–527

    Article  PubMed  Google Scholar 

  29. Peretti-Viton P, Azulay JP, Trefouret S, Brunel H, Daniel C, Viton JM, Flori A, Salazard B, Pouget J, Serratrice G, Salamon G (1999) MRI of the intracranial corticospinal tracts in amyotrophic and primary lateral sclerosis. Neuroradiology 41:744–749

    Article  CAS  PubMed  Google Scholar 

  30. Miaux Y, Martin-Duverneuil N, Cognard C, Weill A, Chiras J (1994) Areas of high signal intensity in the posterior limbs of the internal capsules in amyotrophic lateral sclerosis: normal or pathologic MR finding? Radiology 191:870–871

    CAS  Google Scholar 

  31. Hajnal JV, De Coene B, Lewis PD, Baudouin CJ, Cowan FM, Pennock JM, Young IR, Bydder GM (1992) High signal regions in normal white matter shown by heavily T2-weighted CSF nulled IR sequences. J Comput Assist Tomogr 16:506–513

    CAS  PubMed  Google Scholar 

  32. Mirowitz S, Sartor K, Gado M, Torack R (1989) Focal signal-intensity variations in the posterior internal capsule: normal MR findings and distinction from pathologic findings. Radiology 172:535–539

    CAS  PubMed  Google Scholar 

  33. Yoshiura T, Higano S, Rubio A, Shrier DA, Kwok WE, Iwanaga S, Numaguchi Y (2000) Heschl and superior temporal gyri: low signal intensity of the cortex on T2-weighted MR images of the normal brain. Radiology 214:217–221

    CAS  PubMed  Google Scholar 

  34. Yagishita A ,Nakano I, Oda M, Hirano A (1994) Location of the corticospinal tract in the internal capsule at MR imaging. Radiology 191:455–460

    CAS  PubMed  Google Scholar 

  35. Barnes D, Munro PM, Youl BD, Prineas JW, McDonald WI (1991) The longstanding MS lesion. A quantitative MRI and electron microscopic study. Brain 114(Pt 3):1271–1280

    PubMed  Google Scholar 

  36. Suhy J, Miller RG, Rule R, Schuff N, Licht J, Dronsky V, Gelinas D, Maudsley AA, Weiner MW (2002) Early detection and longitudinal changes in amyotrophic lateral sclerosis by (1)H MRSI. Neurology 58:773–779

    CAS  PubMed  Google Scholar 

  37. Schuff N, Rooney WD, Miller R, Gelinas DF, Amend DL, Maudsley AA, Weiner MW (2001) Reanalysis of multislice (1)H MRSI in amyotrophic lateral sclerosis. Magn Reson Med 45:513–516

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. C. Tchoyoson Lim MBBS, MMed, FRCR.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, H., Lim, C.C.T., Ma, L. et al. Combined MR spectroscopic imaging and diffusion tensor MRI visualizes corticospinal tract degeneration in amyotrophic lateral sclerosis. J Neurol 251, 1249–1254 (2004). https://doi.org/10.1007/s00415-004-0526-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-004-0526-9

Key words

Navigation