Skip to main content

Advertisement

Log in

Null allele sequence structure at the DYS448 locus and implications for profile interpretation

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Null alleles can occur with any PCR-based STR typing system. They generally are due to deletions within the target region or primer binding sites or by primer binding site mutations that destabilize hybridization of at least one of the primers flanking the target region. Although not common, null types were detected at the DYS448 locus in seven out of 1,005 unrelated males in the Hispanic population. Of these DYS448 null types, four individuals displayed an apparent duplication at the DYS437 locus. The additional allele observed at the DYS437 locus is in actuality a smaller-sized DYS448 amplicon, which is the result of a deletion of the invariant N42 base pair domain and downstream repeats within the DYS448 locus. Thus, some DYS448 null types are not truly null. A true DYS448 null allele carried numerous primer binding site variants and a large deletion including the N42 base pair domain and surrounding or downstream repeat regions. The presence of null alleles is not a real concern for interpretation of Y STR loci evidence; current methods for interpreting Y STR profiles easily accommodate such phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Corach D, Filgueira Risso L, Marino M, Penacino G, Sala A (2001) Routine Y-STR typing in forensic casework. Forensic Sci Int 118:131–135

    Article  CAS  PubMed  Google Scholar 

  2. Gusmão L, Butler JM, Carracedo A (2006) DNA Commission of the International Society of Forensic Genetics (ISFG): an update of the recommendations on the use of Y-STRs in forensic analysis. Int J Leg Med 120:191–200

    Article  Google Scholar 

  3. Hohoff C, Dewa K, Sibbing U, Hoppe K, Forster P, Brinkmann B (2007) Y-chromosomal microsatellite mutation rates in a population sample from northwestern Germany. Int J Leg Med 121:359–363

    Article  Google Scholar 

  4. Honda K, Roewer L, de Knijff P (1999) Male DNA typing from 25-year-old vaginal swabs using Y chromosomal STR polymorphisms in retrial request case. J Forensic Sci 44:868–872

    CAS  PubMed  Google Scholar 

  5. Jobling MA, Pandya A, Tayler-Smith C (1997) The Y chromosome in forensic and paternity testing. Int J Leg Med 110:118–124

    Article  CAS  Google Scholar 

  6. Kayser M, de Knijff P, Dieltjes P et al (1997) Applications of microsatellite-based Y-chromosome haplotyping. Electrophoresis 18:1602–1607

    Article  CAS  PubMed  Google Scholar 

  7. Krenke BE, Viculis L, Richard ML et al (2005) Validation of a male-specific, 12-locus fluorescent short tandem repeat (STR) multiplex. Forensic Sci Int 148:1–14

    Article  CAS  PubMed  Google Scholar 

  8. Mulero JJ, Chang CW, Calandro LM, Green RL, Li Y, Johnson CL, Hennessy LK (2006) Development and validation of the AmpFlSTR Yfiler PCR amplification kit: a male specific, single amplification 17 Y-STR multiplex system. J Forensic Sci 51:64–75

    Article  CAS  PubMed  Google Scholar 

  9. Park MJ, Lee HY, Chung U, Kang SC, Shin KJ (2006) Y-STR analysis of degraded DNA using reduced-size amplicons. Int J Leg Med 121:152–157

    Article  Google Scholar 

  10. Prinz M, Boll K, Baum H, Shaler B (1997) Multiplexing of Y-chromosome specific STRs and performance of mixed samples. Forensic Sci Int 85:209–218

    Article  CAS  PubMed  Google Scholar 

  11. Sinha S, Budowle B, Chakraborty R et al (2004) Utility of the Y-STR Y-PLEXTM 6 and Y-PLEXTM 5 in forensic casework and 11 Y-STR haplotype database for three major population groups in the United States. J Forensic Sci 49:691–700

    Article  CAS  PubMed  Google Scholar 

  12. Budowle B, Sprecher CJ (2001) Concordance study on population database samples using the PowerPlexTM 16 Kit and AmpFlSTR® Profiler PlusTM Kit and AmpFlSTR® COfilerTM Kit. J Forensic Sci 46:637–641

    CAS  PubMed  Google Scholar 

  13. Budowle B, Masibay A, Anderson SJ et al (2001) STR primer concordance study. Forensic Sci Int 124:47–54

    Article  CAS  PubMed  Google Scholar 

  14. Leibelt C, Budowle B, Collins P et al (2003) Identification of a D8S1179 primer binding site mutation and the validation of a primer designed to recover null alleles. Forensic Sci Int 133:220–227

    Article  CAS  PubMed  Google Scholar 

  15. Chang CW, Mulero JJ, Budowle B, Calandro LM, Hennessy LK (2006) Identification of a novel polymorphism in the X-chromosome region homologous to the DYS456 locus. J Forensic Sci 51:344–348

    Article  CAS  PubMed  Google Scholar 

  16. Collins FS, Brooks LD, Chakravarti A (1998) A DNA polymorphism discovery resource for research on human genetic variation. Genome Res 8:1229–1231

    CAS  PubMed  Google Scholar 

  17. Fredman D, Munns G, Rios D et al (2004) HGVbase: a curated resource describing human DNA variation and phenotype relationships. Nucleic Acids Res 32:D516–D519

    Article  CAS  PubMed  Google Scholar 

  18. Wheeler DL, Barrett T, Benson DA et al (2005) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 33:D39–D45

    Article  CAS  PubMed  Google Scholar 

  19. Chang YM, Perumal R, Keat PY, Kuehn DL (2007) Haplotype diversity of 16 Y-chromosomal STRs in three main ethnic populations (Malays, Chinese and Indians) in Malaysia. Forens Sci Int 167:70–76

    Article  CAS  Google Scholar 

  20. Park MJ, Kyoung-Jin S, Kim NY, Yang WI, Cho SH, Lee HY (2008) Characterization of deletions in the DYS385 flanking region and null alleles associated with AZFc microdeletions in Koreans. J Forens Sci 53:331–334

    Article  CAS  Google Scholar 

  21. Parkin EJ, Kraayenbrink T, Opgenort JR, van Driem GL, Tuladhar NM, de Knijff P, Jobling MA (2007) Diversity of 26-locus Y-STR haplotypes in a Nepalese population sample: isolation and drift in the Himalayas. Forens Sci Int 166:176–181

    Article  CAS  Google Scholar 

  22. Mizuno N, Nakahara H, Sekiguchi K, Yoshida K, Nakano M, Kasai K (2008) 16 Y chromosomal STR haplotypes in Japanese. Forens Sci Int 174:71–76

    Article  Google Scholar 

  23. Roewer L, Krüger C, Willuweit S et al (2007) Y-chromosomal STR haplotypes in Kalmyk population samples. Forensic Sci Int 173:204–209

    Article  CAS  PubMed  Google Scholar 

  24. Sánchez C, Barrot C et al (2007) Haplotype frequencies of 16 Y-chromosome STR loci in the Barcelona metropolitan area population using Y-Filer kit. Forensic Sci Int 72:211–217

    Article  Google Scholar 

  25. Redd AJ, Agellon AB, Kearney VA et al (2002) Forensic value of 14 novel STRs on the human Y chromosome. Forensic Sci Int 130:97–111

    Article  CAS  PubMed  Google Scholar 

  26. Tang JP, Hou YP, Li YB, Wu J, Zhang J, Zhang HJ (2003) Characterization of eight Y-STR loci and haplotypes in a Chinese Han population. Int J Legal Med 117:263–270

    Article  PubMed  Google Scholar 

  27. Budowle B, Giusti AM, Waye JS et al (1991) Fixed bin analysis for statistical evaluation of continuous distributions of allelic data from VNTR loci for use in forensic comparisons. Amer J Hum Genet 48:841–855

    CAS  PubMed  Google Scholar 

  28. Chakraborty R, de Andrade M, Daiger SP, Budowle B (1992) Apparent heterozygote deficiencies observed in DNA typing data and their implications in forensic applications. Ann Hum Gen 56:45–57

    Article  CAS  Google Scholar 

  29. Budowle B, Sinha SK, Lee HS, Chakraborty R (2003) Utility of Y-chromosome STR haplotypes in forensic applications. Forensic Sci Rev 15:153–164

    Google Scholar 

  30. Budowle B, Ge J, Chakraborty R (2007) Basic principles for estimating the rarity of Y-STR haplotypes derived from forensic evidence. Eighteenth International Symposium on Human Identification 2007. Promega Corporation, Madison, Wisconsin http://www.promega.com/ussymp18proc/default.htm

    Google Scholar 

  31. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Bio Evol 24:1596–1599

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This is publication number 08-02 of the Laboratory Division of the Federal Bureau of Investigation. Names of commercial manufacturers are provided for identification only, and inclusion does not imply endorsement by the Federal Bureau of Investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce Budowle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Budowle, B., Aranda, X.G., Lagace, R.E. et al. Null allele sequence structure at the DYS448 locus and implications for profile interpretation. Int J Legal Med 122, 421–427 (2008). https://doi.org/10.1007/s00414-008-0258-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-008-0258-y

Keywords

Navigation