Skip to main content

Advertisement

Log in

DNA damage accumulation and repair defects in acute myeloid leukemia: implications for pathogenesis, disease progression, and chemotherapy resistance

  • Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

DNA damage repair mechanisms are vital to maintain genomic integrity. Mutations in genes involved in the DNA damage response (DDR) can increase the risk of developing cancer. In recent years, a variety of polymorphisms in DDR genes have been associated with increased risk of developing acute myeloid leukemia (AML) or of disease relapse. Moreover, a growing body of literature has indicated that epigenetic silencing of DDR genes could contribute to the leukemogenic process. In addition, a variety of AML oncogenes have been shown to induce replication and oxidative stress leading to accumulation of DNA damage, which affects the balance between proliferation and differentiation. Conversely, upregulation of DDR genes can provide AML cells with escape mechanisms to the DDR anticancer barrier and induce chemotherapy resistance. The current review summarizes the DDR pathways in the context of AML and describes how aberrant DNA damage response can affect AML pathogenesis, disease progression, and resistance to standard chemotherapy, and how defects in DDR pathways may provide a new avenue for personalized therapeutic strategies in AML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alcalay M, Meani N, Gelmetti V, Fantozzi A, Fagioli M, Orleth A, Riganelli D, Sebastiani C, Cappelli E, Casciari C et al (2003) Acute myeloid leukemia fusion proteins deregulate genes involved in stem cell maintenance and DNA repair. J Clin Invest 112:1751–1761

    CAS  PubMed Central  PubMed  Google Scholar 

  • Allan JM, Smith AG, Wheatley K, Hills RK, Travis LB, Hill DA, Swirsky DM, Morgan GJ, Wild CP (2004) Genetic variation in XPD predicts treatment outcome and risk of acute myeloid leukemia following chemotherapy. Blood 104:3872–3877

    CAS  PubMed  Google Scholar 

  • Araujo FD, Pierce AJ, Stark JM, Jasin M (2002) Variant XRCC3 implicated in cancer is functional in homology-directed repair of double-strand breaks. Oncogene 21:4176–4180

    CAS  PubMed  Google Scholar 

  • Auerbach AD (1992) Fanconi anemia and leukemia: tracking the genes. Leukemia 6(Suppl 1):1–4

    PubMed  Google Scholar 

  • Bagrintseva K, Geisenhof S, Kern R, Eichenlaub S, Reindl C, Ellwart JW, Hiddemann W, Spiekermann K (2005) FLT3-ITD-TKD dual mutants associated with AML confer resistance to FLT3 PTK inhibitors and cytotoxic agents by overexpression of Bcl-x(L). Blood 105:3679–3685

    CAS  PubMed  Google Scholar 

  • Banescu C, Duicu C, Trifa AP, Dobreanu M (2014) XRCC1 Arg194Trp and Arg399Gln polymorphisms are significantly associated with shorter survival in acute myeloid leukemia. Leuk Lymphoma 55:365–370

    CAS  PubMed  Google Scholar 

  • Baumann P, Benson FE, West SC (1996) Human Rad51 protein promotes ATP-dependent homologous pairing and strand transfer reactions in vitro. Cell 87:757–766

    CAS  PubMed  Google Scholar 

  • Ben-Ami O, Friedman D, Leshkowitz D, Goldenberg D, Orlovsky K, Pencovich N, Lotem J, Tanay A, Groner Y (2013) Addiction of t (8;21) and inv(16) acute myeloid leukemia to native RUNX1. Cell Rep 4:1131–1143

  • Blanpain C, Mohrin M, Sotiropoulou PA, Passegue E (2011) DNA-damage response in tissue-specific and cancer stem cells. Cell Stem Cell 8:16–29

    CAS  PubMed  Google Scholar 

  • Boichuk S, Hu L, Makielski K, Pandolfi PP, Gjoerup OV (2011) Functional connection between Rad51 and PML in homology-directed repair. PLoS One 6:e25814

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boukarabila H, Saurin AJ, Batsche E, Mossadegh N, van Lohuizen M, Otte AP, Pradel J, Muchardt C, Sieweke M, Duprez E (2009) The PRC1 polycomb group complex interacts with PLZF/RARA to mediate leukemic transformation. Genes Dev 23:1195–1206

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brady N, Gaymes TJ, Cheung M, Mufti GJ, Rassool FV (2003) Increased error-prone NHEJ activity in myeloid leukemias is associated with DNA damage at sites that recruit key nonhomologous end-joining proteins. Cancer Res 63:1798–1805

    CAS  PubMed  Google Scholar 

  • Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, Meuth M, Curtin NJ, Helleday T (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly (ADP-ribose) polymerase. Nature 434:913–917

    CAS  PubMed  Google Scholar 

  • Bryant HE, Petermann E, Schultz N, Jemth AS, Loseva O, Issaeva N, Johansson F, Fernandez S, McGlynn P, Helleday T (2009) PARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination. EMBO J 28:2601–2615

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bullinger L, Rucker FG, Kurz S, Du J, Scholl C, Sander S, Corbacioglu A, Lottaz C, Krauter J, Frohling S et al (2007) Gene-expression profiling identifies distinct subclasses of core binding factor acute myeloid leukemia. Blood 110:1291–1300

    CAS  PubMed  Google Scholar 

  • Bunting SF, Nussenzweig A (2013) End-joining, translocations and cancer. Nat Rev Cancer 13:443–454

    CAS  PubMed  Google Scholar 

  • Cai MY, Tong ZT, Zheng F, Liao YJ, Wang Y, Rao HL, Chen YC, Wu QL, Liu YH, Guan XY et al (2011) EZH2 protein: a promising immunomarker for the detection of hepatocellular carcinomas in liver needle biopsies. Gut 60:967–976

    CAS  PubMed  Google Scholar 

  • Cancer Genome Atlas Research N (2013) Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 368:2059–2074

    Google Scholar 

  • Casorelli I, Tenedini E, Tagliafico E, Blasi MF, Giuliani A, Crescenzi M, Pelosi E, Testa U, Peschle C, Mele L et al (2006) Identification of a molecular signature for leukemic promyelocytes and their normal counterparts: focus on DNA repair genes. Leukemia 20:1978–1988

    CAS  PubMed  Google Scholar 

  • Cavelier C, Didier C, Prade N, Mansat-De Mas V, Manenti S, Recher C, Demur C, Ducommun B (2009) Constitutive activation of the DNA damage signaling pathway in acute myeloid leukemia with complex karyotype: potential importance for checkpoint targeting therapy. Cancer Res 69:8652–8661

    CAS  PubMed  Google Scholar 

  • Chan IT, Kutok JL, Williams IR, Cohen S, Moore S, Shigematsu H, Ley TJ, Akashi K, Le Beau MM, Gilliland DG (2006) Oncogenic K-ras cooperates with PML-RAR alpha to induce an acute promyelocytic leukemia-like disease. Blood 108:1708–1715

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chaudhuri, L., Vincelette, N. D., Koh, B. D., Naylor, R. M., Flatten, K. S., Peterson, K. L., McNally, A., Gojo, I., Karp, J. E., Mesa, R. A., et al. (2013). Chk1 and WEE1 inhibition combine synergistically to enhance therapeutic efficacy in acute myeloid leukemia ex vivo. Haematologica

  • Cheung N, So CW (2011) Transcriptional and epigenetic networks in haematological malignancy. FEBS Lett 585:2100–2111

    CAS  PubMed  Google Scholar 

  • Cheung N, Chan LC, Thompson A, Cleary ML, So CW (2007) Protein arginine-methyltransferase-dependent oncogenesis. Nat Cell Biol 9:1208–1215

    CAS  PubMed  Google Scholar 

  • Cowell IG, Sondka Z, Smith K, Lee KC, Manville CM, Sidorczuk-Lesthuruge M, Rance HA, Padget K, Jackson GH, Adachi N, Austin CA (2012) Model for MLL translocations in therapy-related leukemia involving topoisomerase IIbeta-mediated DNA strand breaks and gene proximity. Proc Natl Acad Sci U S A 109:8989–8994

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cramer-Morales K, Nieborowska-Skorska M, Scheibner K, Padget M, Irvine DA, Sliwinski T, Haas K, Lee J, Geng H, Roy D et al (2013) Personalized synthetic lethality induced by targeting RAD52 in leukemias identified by gene mutation and expression profile. Blood 122:1293–1304

    CAS  PubMed Central  PubMed  Google Scholar 

  • Das-Gupta EP, Seedhouse CH, Russell NH (2001) Microsatellite instability occurs in defined subsets of patients with acute myeloblastic leukaemia. Br J Haematol 114:307–312

    CAS  PubMed  Google Scholar 

  • D’Autreaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–824

    PubMed  Google Scholar 

  • David SS, O’Shea VL, Kundu S (2007) Base-excision repair of oxidative DNA damage. Nature 447:941–950

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deshpande AJ, Chen L, Fazio M, Sinha AU, Bernt KM, Banka D, Dias S, Chang J, Olhava EJ, Daigle SR et al (2013) Leukemic transformation by the MLL-AF6 fusion oncogene requires the H3K79 methyltransferase Dot1l. Blood 121:2533–2541

    CAS  PubMed Central  PubMed  Google Scholar 

  • Didier C, Demur C, Grimal F, Jullien D, Manenti S, Ducommun B (2012) Evaluation of checkpoint kinase targeting therapy in acute myeloid leukemia with complex karyotype. Cancer Biol Ther 13:307–313

    PubMed Central  PubMed  Google Scholar 

  • Eguchi M, Eguchi-Ishimae M, Knight D, Kearney L, Slany R, Greaves M (2006) MLL chimeric protein activation renders cells vulnerable to chromosomal damage: an explanation for the very short latency of infant leukemia. Gene Chromosome Cancer 45:754–760

    CAS  Google Scholar 

  • Fan J, Li L, Small D, Rassool F (2010) Cells expressing FLT3/ITD mutations exhibit elevated repair errors generated through alternative NHEJ pathways: implications for genomic instability and therapy. Blood 116:5298–5305

    CAS  PubMed Central  PubMed  Google Scholar 

  • Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C et al (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434:917–921

    CAS  PubMed  Google Scholar 

  • Felix CA, Hosler MR, Slater DJ, Parker RI, Masterson M, Whitlock JA, Rebbeck TR, Nowell PC, Lange BJ (1998) MLL genomic breakpoint distribution within the breakpoint cluster region in de novo leukemia in children. J Pediatr Hematol Oncol 20:299–308

    CAS  PubMed  Google Scholar 

  • Friedberg EC (2001) How nucleotide excision repair protects against cancer. Nat Rev Cancer 1:22–33

    CAS  PubMed  Google Scholar 

  • Fung TK, So CW (2013) Overcoming treatment resistance in acute promyelocytic leukemia and beyond. Oncotarget 4:1128–1129

    PubMed Central  PubMed  Google Scholar 

  • Gaymes TJ, North PS, Brady N, Hickson ID, Mufti GJ, Rassool FV (2002) Increased error-prone non homologous DNA end-joining—a proposed mechanism of chromosomal instability in bloom’s syndrome. Oncogene 21:2525–2533

    CAS  PubMed  Google Scholar 

  • Gaymes TJ, Shall S, Farzaneh F, Mufti GJ (2008) Chromosomal instability syndromes are sensitive to poly ADP-ribose polymerase inhibitors. Haematologica 93:1886–1889

    CAS  PubMed  Google Scholar 

  • Gaymes TJ, Shall S, MacPherson LJ, Twine NA, Lea NC, Farzaneh F, Mufti GJ (2009) Inhibitors of poly ADP-ribose polymerase (PARP) induce apoptosis of myeloid leukemic cells: potential for therapy of myeloid leukemia and myelodysplastic syndromes. Haematologica 94:638–646

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gaymes TJ, Mohamedali AM, Patterson M, Matto N, Smith A, Kulasekararaj A, Chelliah R, Curtin N, Farzaneh F, Shall S, Mufti G (2013) Microsatellite instability induced mutations in DNA repair genes Ctip and MRE11 confer hypersensitivity to poly (ADP-ribose) polymerase (PARP) inhibitors in myeloidmalignancies. Haematologica

  • Grabocka E, Pylayeva-Gupta Y, Jones MJ, Lubkov V, Yemanaberhan E, Taylor L, Jeng HH, Bar-Sagi D (2014) Wild-type H- and N-Ras promote mutant K-Ras-driven tumorigenesis by modulating the DNA damage response. Cancer Cell 25:243–256

    CAS  PubMed  Google Scholar 

  • Grignani F, De Matteis S, Nervi C, Tomassoni L, Gelmetti V, Cioce M, Fanelli M, Ruthardt M, Ferrara FF, Zamir I et al (1998) Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature 391:815–818

    CAS  PubMed  Google Scholar 

  • Grimwade D, Hills RK, Moorman AV, Walker H, Chatters S, Goldstone AH, Wheatley K, Harrison CJ, Burnett AK, National Cancer Research Institute Adult Leukaemia Working Group (2010) Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood 116:354–365

    CAS  PubMed  Google Scholar 

  • Haince JF, Kozlov S, Dawson VL, Dawson TM, Hendzel MJ, Lavin MF, Poirier GG (2007) Ataxia telangiectasia mutated (ATM) signaling network is modulated by a novel poly (ADP-ribose)-dependent pathway in the early response to DNA-damaging agents. J Biol Chem 282:16441–16453

    CAS  PubMed  Google Scholar 

  • Haince JF, McDonald D, Rodrigue A, Dery U, Masson JY, Hendzel MJ, Poirier GG (2008) PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites. J Biol Chem 283:1197–1208

    CAS  PubMed  Google Scholar 

  • Hamdy MS, El-Haddad AM, Bahaa El-Din NM, Makhlouf MM, Abdel-Hamid SM (2011) RAD51 and XRCC3 gene polymorphisms and the risk of developing acute myeloid leukemia. J Investig Med Off Publ Am Fed Clin Res 59:1124–1130

    CAS  Google Scholar 

  • Harris WJ, Huang X, Lynch JT, Spencer GJ, Hitchin JR, Li Y, Ciceri F, Blaser JG, Greystoke BF, Jordan AM et al (2012) The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells. Cancer Cell 21:473–487

    CAS  PubMed  Google Scholar 

  • Hasselbach L, Haase S, Fischer D, Kolberg HC, Sturzbecher HW (2005) Characterisation of the promoter region of the human DNA-repair gene Rad51. Eur J Gynaecol Oncol 26:589–598

    CAS  PubMed  Google Scholar 

  • Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA (2008) DNA repair pathways as targets for cancer therapy. Nat Rev Cancer 8:193–204

    CAS  PubMed  Google Scholar 

  • Hole PS, Pearn L, Tonks AJ, James PE, Burnett AK, Darley RL, Tonks A (2010) Ras-induced reactive oxygen species promote growth factor-independent proliferation in human CD34+ hematopoietic progenitor cells. Blood 115:1238–1246

    CAS  PubMed  Google Scholar 

  • Hole PS, Darley RL, Tonks A (2011) Do reactive oxygen species play a role in myeloid leukemias? Blood 117:5816–5826

    CAS  PubMed  Google Scholar 

  • Horton TM, Jenkins G, Pati D, Zhang L, Dolan ME, Ribes-Zamora A, Bertuch AA, Blaney SM, Delaney SL, Hegde M, Berg SL (2009) Poly (ADP-ribose) polymerase inhibitor ABT-888 potentiates the cytotoxic activity of temozolomide in leukemia cells: influence of mismatch repair status and O6-methylguanine-DNA methyltransferase activity. Mol Cancer Ther 8:2232–2242

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang Y, Xie D, Tang N, Wang J, Zeng X, Zhao P, He L (2014) XRCC1 Arg399Gln variation and leukemia susceptibility: evidence from 2,647 cases and 5,518 controls. Tumour Biol J Int Soc Oncodevelopmental Biol Med 35:799–808

    CAS  Google Scholar 

  • Insinga A, Monestiroli S, Ronzoni S, Carbone R, Pearson M, Pruneri G, Viale G, Appella E, Pelicci P, Minucci S (2004) Impairment of p53 acetylation, stability and function by an oncogenic transcription factor. EMBO J 23:1144–1154

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ito K, Hirao A, Arai F, Matsuoka S, Takubo K, Hamaguchi I, Nomiyama K, Hosokawa K, Sakurada K, Nakagata N et al (2004) Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431:997–1002

    CAS  PubMed  Google Scholar 

  • Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461:1071–1078

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jawad M, Seedhouse CH, Russell N, Plumb M (2006) Polymorphisms in human homeobox HLX1 and DNA repair RAD51 genes increase the risk of therapy-related acute myeloid leukemia. Blood 108:3916–3918

    CAS  PubMed  Google Scholar 

  • Jiricny J (2006) The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol 7:335–346

    CAS  PubMed  Google Scholar 

  • Kagawa W, Kurumizaka H, Ikawa S, Yokoyama S, Shibata T (2001) Homologous pairing promoted by the human Rad52 protein. J Biol Chem 276:35201–35208

    CAS  PubMed  Google Scholar 

  • Kantidze OL, Razin SV (2007) Chemotherapy-related secondary leukemias: a role for DNA repair by error-prone non-homologous end joining in topoisomerase II—Induced chromosomal rearrangements. Gene 391:76–79

    CAS  PubMed  Google Scholar 

  • Khanna KK, Jackson SP (2001) DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27:247–254

    CAS  PubMed  Google Scholar 

  • Kim PM, Allen C, Wagener BM, Shen Z, Nickoloff JA (2001) Overexpression of human RAD51 and RAD52 reduces double-strand break-induced homologous recombination in mammalian cells. Nucleic Acids Res 29:4352–4360

    CAS  PubMed Central  PubMed  Google Scholar 

  • King FW, Skeen J, Hay N, Shtivelman E (2004) Inhibition of Chk1 by activated PKB/Akt. Cell Cycle 3:634–637

    CAS  PubMed  Google Scholar 

  • Koniaras K, Cuddihy AR, Christopoulos H, Hogg A, O’Connell MJ (2001) Inhibition of Chk1-dependent G2 DNA damage checkpoint radiosensitizes p53 mutant human cells. Oncogene 20:7453–7463

    CAS  PubMed  Google Scholar 

  • Krejci O, Wunderlich M, Geiger H, Chou FS, Schleimer D, Jansen M, Andreassen PR, Mulloy JC (2008) p53 signaling in response to increased DNA damage sensitizes AML1-ETO cells to stress-induced death. Blood 111:2190–2199

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krivtsov AV, Armstrong SA (2007) MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer 7:823–833

    CAS  PubMed  Google Scholar 

  • Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J, Levine JE, Wang J, Hahn WC, Gilliland DG et al (2006) Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442:818–822

    CAS  PubMed  Google Scholar 

  • Kushner BH, Heller G, Cheung NK, Wollner N, Kramer K, Bajorin D, Polyak T, Meyers PA (1998) High risk of leukemia after short-term dose-intensive chemotherapy in young patients with solid tumors. J Clin Oncol Off J Am Soc Clin Oncol 16:3016–3020

    CAS  Google Scholar 

  • Kwok C, Zeisig BB, Dong S, So CW (2006) Forced homo-oligomerization of RARalpha leads to transformation of primary hematopoietic cells. Cancer Cell 9:95–108

    CAS  PubMed  Google Scholar 

  • Li C, Liu Y, Hu Z, Zhou Y (2013) Genetic polymorphisms of RAD51 and XRCC3 and acute myeloid leukemia risk: a meta-analysis. Leuk Lymphoma

  • Liddiard K, Hills R, Burnett AK, Darley RL, Tonks A (2010) OGG1 is a novel prognostic indicator in acute myeloid leukaemia. Oncogene 29:2005–2012

    CAS  PubMed  Google Scholar 

  • Lieber MR (2010) NHEJ and its backup pathways in chromosomal translocations. Nat Struct Mol Biol 17:393–395

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin RJ, Nagy L, Inoue S, Shao W, Miller WH Jr, Evans RM (1998) Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 391:811–814

    CAS  PubMed  Google Scholar 

  • Lindvall C, Furge K, Bjorkholm M, Guo X, Haab B, Blennow E, Nordenskjold M, Teh BT (2004) Combined genetic and transcriptional profiling of acute myeloid leukemia with normal and complex karyotypes. Haematologica 89:1072–1081

    CAS  PubMed  Google Scholar 

  • Linggi B, Muller-Tidow C, van de Locht L, Hu M, Nip J, Serve H, Berdel WE, van der Reijden B, Quelle DE, Rowley JD et al (2002) The t (8;21) fusion protein, AML1 ETO, specifically represses the transcription of the p14 (ARF) tumor suppressor in acute myeloid leukemia. Nat Med 8:743–750

    CAS  PubMed  Google Scholar 

  • Liu J, Cao L, Chen J, Song S, Lee IH, Quijano C, Liu H, Keyvanfar K, Chen H, Cao LY et al (2009) Bmi1 regulates mitochondrial function and the DNA damage response pathway. Nature 459:387–392

    CAS  PubMed  Google Scholar 

  • Liu L, Yang L, Mi Y, Wang J, Li J, Zhang Y, Ma X, Qin T, Xu Z, Xiao Z (2011) RAD51 and XRCC3 polymorphisms: impact on the risk and treatment outcomes of de novo inv (16) or t (16;16)/CBFbeta-MYH11 (+) acute myeloid leukemia. Leuk Res 35:1020–1026

    CAS  PubMed  Google Scholar 

  • Lo-Coco F, Avvisati G, Vignetti M, Thiede C, Orlando SM, Iacobelli S, Ferrara F, Fazi P, Cicconi L, Di Bona E et al (2013) Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N Engl J Med 369:111–121

    CAS  PubMed  Google Scholar 

  • Look AT (1997) Oncogenic transcription factors in the human acute leukemias. Science 278:1059–1064

    CAS  PubMed  Google Scholar 

  • Mandal PK, Blanpain C, Rossi DJ (2011) DNA damage response in adult stem cells: pathways and consequences. Nat Rev Mol Cell Biol 12:198–202

    CAS  PubMed  Google Scholar 

  • Mao G, Pan X, Gu L (2008a) Evidence that a mutation in the MLH1 3′-untranslated region confers a mutator phenotype and mismatch repair deficiency in patients with relapsed leukemia. J Biol Chem 283:3211–3216

    CAS  PubMed  Google Scholar 

  • Mao G, Yuan F, Absher K, Jennings CD, Howard DS, Jordan CT, Gu L (2008b) Preferential loss of mismatch repair function in refractory and relapsed acute myeloid leukemia: potential contribution to AML progression. Cell Res 18:281–289

    CAS  PubMed  Google Scholar 

  • Meyers S, Downing JR, Hiebert SW (1993) Identification of AML-1 and the (8;21) translocation protein (AML-1/ETO) as sequence-specific DNA-binding proteins: the runt homology domain is required for DNA binding and protein-protein interactions. Mol Cell Biol 13:6336–6345

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mistry AR, Felix CA, Whitmarsh RJ, Mason A, Reiter A, Cassinat B, Parry A, Walz C, Wiemels JL, Segal MR et al (2005) DNA topoisomerase II in therapy-related acute promyelocytic leukemia. N Engl J Med 352:1529–1538

    CAS  PubMed  Google Scholar 

  • Miyano K, Ueno N, Takeya R, Sumimoto H (2006) Direct involvement of the small GTPase Rac in activation of the superoxide-producing NADPH oxidase Nox1. J Biol Chem 281:21857–21868

    CAS  PubMed  Google Scholar 

  • Monroe SC, Jo SY, Sanders DS, Basrur V, Elenitoba-Johnson KS, Slany RK, Hess JL (2011) MLL-AF9 and MLL-ENL alter the dynamic association of transcriptional regulators with genes critical for leukemia. Exp Hematol 39(77–86):e71–e75

    Google Scholar 

  • Monzo M, Brunet S, Urbano-Ispizua A, Navarro A, Perea G, Esteve J, Artells R, Granell M, Berlanga J, Ribera JM et al (2006) Genomic polymorphisms provide prognostic information in intermediate-risk acute myeloblastic leukemia. Blood 107:4871–4879

    CAS  PubMed  Google Scholar 

  • Moynahan ME, Jasin M (2010) Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol 11:196–207

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mueller D, Bach C, Zeisig D, Garcia-Cuellar MP, Monroe S, Sreekumar A, Zhou R, Nesvizhskii A, Chinnaiyan A, Hess JL, Slany RK (2007) A role for the MLL fusion partner ENL in transcriptional elongation and chromatin modification. Blood 110:4445–4454

    CAS  PubMed Central  PubMed  Google Scholar 

  • Neff T, Sinha AU, Kluk MJ, Zhu N, Khattab MH, Stein L, Xie H, Orkin SH, Armstrong SA (2012) Polycomb repressive complex 2 is required for MLL-AF9 leukemia. Proc Natl Acad Sci U S A 109:5028–5033

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nguyen AT, Taranova O, He J, Zhang Y (2011) DOT1L, the H3K79 methyltransferase, is required for MLL-AF9-mediated leukemogenesis. Blood 117:6912–6922

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ogrunc, M., Di Micco, R., Liontos, M., Bombardelli, L., Mione, M., Fumagalli, M., Gorgoulis, V. G., and d’Adda di Fagagna, F. (2014). Oncogene-induced reactive oxygen species fuel hyperproliferation and DNA damage response activation. Cell death and differentiation

  • Okada Y, Feng Q, Lin Y, Jiang Q, Li Y, Coffield VM, Su L, Xu G, Zhang Y (2005) hDOT1L links histone methylation to leukemogenesis. Cell 121:167–178

    CAS  PubMed  Google Scholar 

  • Peterson LF, Yan M, Zhang DE (2007) The p21Waf1 pathway is involved in blocking leukemogenesis by the t (8;21) fusion protein AML1-ETO. Blood 109:4392–4398

    CAS  PubMed Central  PubMed  Google Scholar 

  • Petruccelli LA, Pettersson F, Del Rincon SV, Guilbert C, Licht JD, Miller WH, Jr. (2013) Expression of leukemia associated fusion proteins increases sensitivity to histone deacetylase inhibitor induced DNA damage and apoptosis. Mol Cancer Ther

  • Pierce AJ, Johnson RD, Thompson LH, Jasin M (1999) XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev 13:2633–2638

    CAS  PubMed Central  PubMed  Google Scholar 

  • Poppe B, Van Limbergen H, Van Roy N, Vandecruys E, De Paepe A, Benoit Y, Speleman F (2001) Chromosomal aberrations in bloom syndrome patients with myeloid malignancies. Cancer Genet Cytogenet 128:39–42

    CAS  PubMed  Google Scholar 

  • Rassool FV, Gaymes TJ, Omidvar N, Brady N, Beurlet S, Pla M, Reboul M, Lea N, Chomienne C, Thomas NS et al (2007) Reactive oxygen species, DNA damage, and error-prone repair: a model for genomic instability with progression in myeloid leukemia? Cancer Res 67:8762–8771

    CAS  PubMed  Google Scholar 

  • Reinhardt HC, Aslanian AS, Lees JA, Yaffe MB (2007) p53-deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage. Cancer Cell 11:175–189

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rimsza LM, Kopecky KJ, Ruschulte J, Chen IM, Slovak ML, Karanes C, Godwin J, List A, Willman CL (2000) Microsatellite instability is not a defining genetic feature of acute myeloid leukemogenesis in adults: results of a retrospective study of 132 patients and review of the literature. Leukemia 14:1044–1051

    CAS  PubMed  Google Scholar 

  • Rossi DJ, Bryder D, Seita J, Nussenzweig A, Hoeijmakers J, Weissman IL (2007) Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447:725–729

    CAS  PubMed  Google Scholar 

  • Rucker FG, Schlenk RF, Bullinger L, Kayser S, Teleanu V, Kett H, Habdank M, Kugler CM, Holzmann K, Gaidzik VI et al (2012) TP53 alterations in acute myeloid leukemia with complex karyotype correlate with specific copy number alterations, monosomal karyotype, and dismal outcome. Blood 119:2114–2121

    PubMed  Google Scholar 

  • Sallmyr A, Fan J, Datta K, Kim KT, Grosu D, Shapiro P, Small D, Rassool F (2008a) Internal tandem duplication of FLT3 (FLT3/ITD) induces increased ROS production, DNA damage, and misrepair: implications for poor prognosis in AML. Blood 111:3173–3182

    CAS  PubMed  Google Scholar 

  • Sallmyr A, Fan J, Rassool FV (2008b) Genomic instability in myeloid malignancies: increased reactive oxygen species (ROS), DNA double strand breaks (DSBs) and error-prone repair. Cancer Lett 270:1–9

    CAS  PubMed  Google Scholar 

  • Schar P (2001) Spontaneous DNA damage, genome instability, and cancer—when DNA replication escapes control. Cell 104:329–332

    CAS  PubMed  Google Scholar 

  • Schoch C, Haferlach T, Bursch S, Gerstner D, Schnittger S, Dugas M, Kern W, Loffler H, Hiddemann W (2002) Loss of genetic material is more common than gain in acute myeloid leukemia with complex aberrant karyotype: a detailed analysis of 125 cases using conventional chromosome analysis and fluorescence in situ hybridization including 24-color FISH. Gene Chromosome Cancer 35:20–29

    Google Scholar 

  • Schoch C, Kern W, Kohlmann A, Hiddemann W, Schnittger S, Haferlach T (2005) Acute myeloid leukemia with a complex aberrant karyotype is a distinct biological entity characterized by genomic imbalances and a specific gene expression profile. Gene Chromosome Cancer 43:227–238

    CAS  Google Scholar 

  • Seedhouse C, Bainton R, Lewis M, Harding A, Russell N, Das-Gupta E (2002) The genotype distribution of the XRCC1 gene indicates a role for base excision repair in the development of therapy-related acute myeloblastic leukemia. Blood 100:3761–3766

    CAS  PubMed  Google Scholar 

  • Seedhouse CH, Das-Gupta EP, Russell NH (2003) Methylation of the hMLH1 promoter and its association with microsatellite instability in acute myeloid leukemia. Leukemia 17:83–88

    CAS  PubMed  Google Scholar 

  • Seedhouse C, Faulkner R, Ashraf N, Das-Gupta E, Russell N (2004) Polymorphisms in genes involved in homologous recombination repair interact to increase the risk of developing acute myeloid leukemia. Clin Cancer Res Off J Am Assoc Cancer Res 10:2675–2680

    CAS  Google Scholar 

  • Seedhouse CH, Hunter HM, Lloyd-Lewis B, Massip AM, Pallis M, Carter GI, Grundy M, Shang S, Russell NH (2006) DNA repair contributes to the drug-resistant phenotype of primary acute myeloid leukaemia cells with FLT3 internal tandem duplications and is reversed by the FLT3 inhibitor PKC412. Leukemia 20:2130–2136

    CAS  PubMed  Google Scholar 

  • Seifert, H., Mohr, B., Thiede, C., Oelschlagel, U., Schakel, U., Illmer, T., Soucek, S., Ehninger, G., Schaich, M., and Study Alliance, L (2009) The prognostic impact of 17p (p53) deletion in 2272 adults with acute myeloid leukemia. Leukemia 23:656–663

    Google Scholar 

  • Sheikhha MH, Tobal K, Liu Yin JA (2002) High level of microsatellite instability but not hypermethylation of mismatch repair genes in therapy-related and secondary acute myeloid leukaemia and myelodysplastic syndrome. Br J Haematol 117:359–365

    CAS  PubMed  Google Scholar 

  • Simsek D, Brunet E, Wong SY, Katyal S, Gao Y, McKinnon PJ, Lou J, Zhang L, Li J, Rebar EJ et al (2011) DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation. PLoS Genet 7:e1002080

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sroczynska P, Cruickshank VA, Bukowski JP, Miyagi S, Bagger FO, Walfridsson J, Schuster MB, Porse B, Helin K (2014) shRNA screening identifies JMJD1C as being required for leukemia maintenance. Blood 123:1870–1882

    CAS  PubMed  Google Scholar 

  • Stanulla M, Wang J, Chervinsky DS, Aplan PD (1997) Topoisomerase II inhibitors induce DNA double-strand breaks at a specific site within the AML1 locus. Leukemia 11:490–496

    CAS  PubMed  Google Scholar 

  • Sternsdorf T, Phan VT, Maunakea ML, Ocampo CB, Sohal J, Silletto A, Galimi F, Le Beau MM, Evans RM, Kogan SC (2006) Forced retinoic acid receptor alpha homodimers prime mice for APL-like leukemia. Cancer Cell 9:81–94

    CAS  PubMed  Google Scholar 

  • Stirewalt DL, Radich JP (2003) The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer 3:650–665

    CAS  PubMed  Google Scholar 

  • Strom SS, Estey E, Outschoorn UM, Garcia-Manero G (2010) Acute myeloid leukemia outcome: role of nucleotide excision repair polymorphisms in intermediate risk patients. Leukemia & lymphoma 51:598–605

    CAS  Google Scholar 

  • Takacova S, Slany R, Bartkova J, Stranecky V, Dolezel P, Luzna P, Bartek J, Divoky V (2012) DNA damage response and inflammatory signaling limit the MLL-ENL-induced leukemogenesis in vivo. Cancer Cell 21:517–531

    CAS  PubMed  Google Scholar 

  • Tao, L. C., Stecker, E., and Gardner, H. A. (1971). Werner’s syndrome and acute myeloid leukemia. Can Med Assoc J 105, 951 passim

  • Tarsounas M, Davies D, West SC (2003) BRCA2-dependent and independent formation of RAD51 nuclear foci. Oncogene 22:1115–1123

    CAS  PubMed  Google Scholar 

  • Tothova Z, Kollipara R, Huntly BJ, Lee BH, Castrillon DH, Cullen DE, McDowell EP, Lazo-Kallanian S, Williams IR, Sears C et al (2007) FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128:325–339

    CAS  PubMed  Google Scholar 

  • Viale A, De Franco F, Orleth A, Cambiaghi V, Giuliani V, Bossi D, Ronchini C, Ronzoni S, Muradore I, Monestiroli S et al (2009) Cell-cycle restriction limits DNA damage and maintains self-renewal of leukaemia stem cells. Nature 457:51–56

    CAS  PubMed  Google Scholar 

  • Villa R, Pasini D, Gutierrez A, Morey L, Occhionorelli M, Vire E, Nomdedeu JF, Jenuwein T, Pelicci PG, Minucci S et al (2007) Role of the polycomb repressive complex 2 in acute promyelocytic leukemia. Cancer Cell 11:513–525

    CAS  PubMed  Google Scholar 

  • Vispe S, Cazaux C, Lesca C, Defais M (1998) Overexpression of Rad51 protein stimulates homologous recombination and increases resistance of mammalian cells to ionizing radiation. Nucleic Acids Res 26:2859–2864

    CAS  PubMed Central  PubMed  Google Scholar 

  • Voso MT, Fabiani E, D’Alo F, Guidi F, Di Ruscio A, Sica S, Pagano L, Greco M, Hohaus S, Leone G (2007) Increased risk of acute myeloid leukaemia due to polymorphisms in detoxification and DNA repair enzymes. Ann Oncol Off J Eur Soc Med Oncol ESMO 18:1523–1528

    CAS  Google Scholar 

  • Wang XW, Vermeulen W, Coursen JD, Gibson M, Lupold SE, Forrester K, Xu G, Elmore L, Yeh H, Hoeijmakers JH, Harris CC (1996) The XPB and XPD DNA helicases are components of the p53-mediated apoptosis pathway. Genes Dev 10:1219–1232

    CAS  PubMed  Google Scholar 

  • Wang WW, Spurdle AB, Kolachana P, Bove B, Modan B, Ebbers SM, Suthers G, Tucker MA, Kaufman DJ, Doody MM et al (2001) A single nucleotide polymorphism in the 5′ untranslated region of RAD51 and risk of cancer among BRCA1/2 mutation carriers. Cancer Epidemiol Biomarkers Prev Publ Am Assoc Cancer Res cosponsored Am Soc Prev Oncol 10:955–960

    CAS  Google Scholar 

  • Wang Y, Spitz MR, Zhu Y, Dong Q, Shete S, Wu X (2003) From genotype to phenotype: correlating XRCC1 polymorphisms with mutagen sensitivity. DNA repair 2:901–908

    CAS  PubMed  Google Scholar 

  • Wiederschain D, Kawai H, Shilatifard A, Yuan ZM (2005) Multiple mixed lineage leukemia (MLL) fusion proteins suppress p53-mediated response to DNA damage. J Biol Chem 280:24315–24321

    CAS  PubMed  Google Scholar 

  • Wray J, Williamson EA, Singh SB, Wu Y, Cogle CR, Weinstock DM, Zhang Y, Lee SH, Zhou D, Shao L et al (2013) PARP1 is required for chromosomal translocations. Blood 121:4359–4365

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xavier AC, Taub JW (2010) Acute leukemia in children with Down syndrome. Haematologica 95:1043–1045

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xie C, Drenberg C, Edwards H, Caldwell JT, Chen W, Inaba H, Xu X, Buck SA, Taub JW, Baker SD, Ge Y (2013) Panobinostat enhances cytarabine and daunorubicin sensitivities in AML cells through suppressing the expression of BRCA1, CHK1, and Rad51. PLoS One 8:e79106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yeung PL, Denissova NG, Nasello C, Hakhverdyan Z, Chen JD, Brenneman MA (2012) Promyelocytic leukemia nuclear bodies support a late step in DNA double-strand break repair by homologous recombination. J Cell Biochem 113:1787–1799

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yip BH, So CW (2013) Mixed lineage leukemia protein in normal and leukemic stem cells. Exp Biol Med Maywood 238:315–323

    CAS  PubMed  Google Scholar 

  • Yuan LL, Green AS, Bertoli S, Grimal F, Mansat-De Mas V, Dozier C, Tamburini J, Recher C, Didier C, Manenti S (2014) Pim kinases phosphorylate Chk1 and regulate its functions in acute myeloid leukemia. Leukemia 28:293–301

    CAS  PubMed  Google Scholar 

  • Zeisig BB, Kwok C, Zelent A, Shankaranarayanan P, Gronemeyer H, Dong S, So CW (2007) Recruitment of RXR by homotetrameric RARalpha fusion proteins is essential for transformation. Cancer Cell 12:36–51

    CAS  PubMed  Google Scholar 

  • Zeisig BB, Kulasekararaj AG, Mufti GJ, So CW (2012) SnapShot: acute myeloid leukemia. Cancer Cell 22(698–698):e691

    Google Scholar 

  • Zhang Y, Jasin M (2011) An essential role for CtIP in chromosomal translocation formation through an alternative end-joining pathway. Nat Struct Mol Biol 18:80–84

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Y, Strissel P, Strick R, Chen J, Nucifora G, Le Beau MM, Larson RA, Rowley JD (2002) Genomic DNA breakpoints in AML1/RUNX1 and ETO cluster with topoisomerase II DNA cleavage and DNase I hypersensitive sites in t (8;21) leukemia. Proc Natl Acad Sci U S A 99:3070–3075

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhong S, Hu P, Ye TZ, Stan R, Ellis NA, Pandolfi PP (1999) A role for PML and the nuclear body in genomic stability. Oncogene 18:7941–7947

    CAS  PubMed  Google Scholar 

  • Zhou T, Hasty P, Walter CA, Bishop AJ, Scott LM, Rebel VI (2013) Myelodysplastic syndrome: an inability to appropriately respond to damaged DNA? Exp Hematol 41:665–674

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu YM, Das-Gupta EP, Russell NH (1999) Microsatellite instability and p53 mutations are associated with abnormal expression of the MSH2 gene in adult acute leukemia. Blood 94:733–740

    CAS  PubMed  Google Scholar 

  • Zuber J, Radtke I, Pardee TS, Zhao Z, Rappaport AR, Luo W, McCurrach ME, Yang MM, Dolan ME, Kogan SC et al (2009) Mouse models of human AML accurately predict chemotherapy response. Genes Dev 23:877–889

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Profs. Sidney Shall, Axel Behrens, and Fabrizio d’Adda Di Fagagna for helpful discussion and critical comments. This work is supported by Leukemia and Lymphoma Research (LLR) and Cancer Research UK (CRUK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Wai Eric So.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esposito, M.T., So, C.W.E. DNA damage accumulation and repair defects in acute myeloid leukemia: implications for pathogenesis, disease progression, and chemotherapy resistance. Chromosoma 123, 545–561 (2014). https://doi.org/10.1007/s00412-014-0482-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-014-0482-9

Keywords

Navigation