Skip to main content
Log in

Visualization of the MCM DNA helicase at replication factories before the onset of DNA synthesis

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

In mammalian cells, DNA synthesis takes place at defined nuclear structures termed “replication foci” (RF) that follow the same order of activation in each cell cycle. Intriguingly, immunofluorescence studies have failed to visualize the DNA helicase minichromosome maintenance (MCM) at RF, raising doubts about its physical presence at the sites of DNA synthesis. We have revisited this paradox by pulse-labeling RF during the S phase and analyzing the localization of MCM at labeled DNA in the following cell cycle. Using high-throughput confocal microscopy, we provide direct evidence that MCM proteins concentrate in G1 at the chromosome structures bound to become RF in the S phase. Upon initiation of DNA synthesis, an active “MCM eviction” mechanism contributes to reduce the excess of DNA helicases at RF. Most MCM complexes are released from chromatin, except for a small but detectable fraction that remains at the forks during the S phase, as expected for a replicative helicase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BrdU:

5-bromo-2′-deoxyuridine

EdU:

5-ethynyl-2′-deoxyuridine

IF:

Immunofluorescence

MCM:

Minichromosome maintenance

PCNA:

Proliferating cell nuclear antigen

RF:

Replication foci

References

  • Alabert C, Groth A (2012) Chromatin replication and epigenome maintenance. Nat Rev Mol Cell Biol 13:153–167

    Article  PubMed  CAS  Google Scholar 

  • Aparicio OM, Weinstein DM, Bell SP (1997) Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM proteins and Cdc45p during S phase. Cell 91:59–69

    Article  PubMed  CAS  Google Scholar 

  • Aparicio T, Guillou E, Coloma J, Montoya G, Mendez J (2009) The human GINS complex associates with Cdc45 and MCM and is essential for DNA replication. Nucleic Acids Res 37:2087–2095

    Article  PubMed  CAS  Google Scholar 

  • Bochman ML, Schwacha A (2009) The Mcm complex: unwinding the mechanism of a replicative helicase. Microbiol Mol Biol Rev 73:652–683

    Article  PubMed  CAS  Google Scholar 

  • Bolte S, Cordelieres FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224:213–232

    Article  PubMed  CAS  Google Scholar 

  • Borlado LR, Méndez J (2008) CDC6: from DNA replication to cell cycle checkpoints and oncogenesis. Carcinogenesis 29:237–243

    Article  PubMed  CAS  Google Scholar 

  • Bowers JL, Randell JC, Chen S, Bell SP (2004) ATP hydrolysis by ORC catalyzes reiterative Mcm2–7 assembly at a defined origin of replication. Mol Cell 16:967–978

    Article  PubMed  CAS  Google Scholar 

  • Cayrou C, Coulombe P, Mechali M (2010) Programming DNA replication origins and chromosome organization. Chromosome Res 18:137–145

    Article  PubMed  CAS  Google Scholar 

  • Cayrou C, Coulombe P, Vigneron A, Stanojcic S, Ganier O, Peiffer I, Rivals E, Puy A, Laurent-Chabalier S, Desprat R, Mechali M (2011) Genome-scale analysis of metazoan replication origins reveals their organization in specific but flexible sites defined by conserved features. Genome Res 21:1438–1449

    Article  PubMed  CAS  Google Scholar 

  • Courbet S, Gay S, Arnoult N, Wronka G, Anglana M, Brison O, Debatisse M (2008) Replication fork movement sets chromatin loop size and origin choice in mammalian cells. Nature 455:557–560

    Article  PubMed  CAS  Google Scholar 

  • De Piccoli G, Katou Y, Itoh T, Nakato R, Shirahige K, Labib K (2012) Replisome stability at defective DNA replication forks is independent of S phase checkpoint kinases. Mol Cell 45:696–704

    Article  PubMed  Google Scholar 

  • Diermeier-Daucher S, Clarke ST, Hill D, Vollmann-Zwerenz A, Bradford JA, Brockhoff G (2009) Cell type specific applicability of 5-ethynyl-2′-deoxyuridine (EdU) for dynamic proliferation assessment in flow cytometry. Cytometry A 75:535–546

    PubMed  Google Scholar 

  • Dimitrova DS, Todorov IT, Melendy T, Gilbert DM (1999) Mcm2, but not RPA, is a component of the mammalian early G1-phase prereplication complex. J Cell Biol 146:709–722

    Article  PubMed  CAS  Google Scholar 

  • Edwards MC, Tutter AV, Cvetic C, Gilbert CH, Prokhorova TA, Walter JC (2002) MCM2–7 complexes bind chromatin in a distributed pattern surrounding the origin recognition complex in Xenopus egg extracts. J Biol Chem 277:33049–33057

    Article  PubMed  CAS  Google Scholar 

  • Ekholm-Reed S, Mendez J, Tedesco D, Zetterberg A, Stillman B, Reed SI (2004) Deregulation of cyclin E in human cells interferes with prereplication complex assembly. J Cell Biol 165:789–800

    Article  PubMed  CAS  Google Scholar 

  • Evrin C, Clarke P, Zech J, Lurz R, Sun J, Uhle S, Li H, Stillman B, Speck C (2009) A double-hexameric MCM2–7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc Natl Acad Sci USA 106:20240–20245

    Article  PubMed  CAS  Google Scholar 

  • Findeisen M, El-Denary M, Kapitza T, Graf R, Strausfeld U (1999) Cyclin A-dependent kinase activity affects chromatin binding of ORC, Cdc6, and MCM in egg extracts of Xenopus laevis. Eur J Biochem 264:415–426

    Article  PubMed  CAS  Google Scholar 

  • Fu YV, Yardimci H, Long DT, Ho TV, Guainazzi A, Bermudez VP, Hurwitz J, van Oijen A, Scharer OD, Walter JC (2011) Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase. Cell 146:931–941

    Article  PubMed  CAS  Google Scholar 

  • Fujita M, Kiyono T, Hayashi Y, Ishibashi M (1996) hCDC47, a human member of the MCM family. Dissociation of the nucleus-bound form during S phase. J Biol Chem 271:4349–4354

    Article  PubMed  CAS  Google Scholar 

  • Ge XQ, Blow JJ (2010) Chk1 inhibits replication factory activation but allows dormant origin firing in existing factories. J Cell Biol 191:1285–1297

    Article  PubMed  CAS  Google Scholar 

  • Ge XQ, Jackson DA, Blow JJ (2007) Dormant origins licensed by excess Mcm2–7 are required for human cells to survive replicative stress. Genes Dev 21:3331–3341

    Article  PubMed  CAS  Google Scholar 

  • Gillespie PJ, Blow JJ (2010) Clusters, factories and domains: the complex structure of S-phase comes into focus. Cell Cycle 9:3218–3226

    Article  PubMed  CAS  Google Scholar 

  • Guillou E, Ibarra A, Coulon V, Casado-Vela J, Rico D, Casal I, Schwob E, Losada A, Mendez J (2010) Cohesin organizes chromatin loops at DNA replication factories. Genes Dev 24:2812–2822

    Article  PubMed  CAS  Google Scholar 

  • Hendrickson M, Madine M, Dalton S, Gautier J (1996) Phosphorylation of MCM4 by cdc2 protein kinase inhibits the activity of the minichromosome maintenance complex. Proc Natl Acad Sci USA 93:12223–12228

    Article  PubMed  CAS  Google Scholar 

  • Holthoff HP, Baack M, Richter A, Ritzi M, Knippers R (1998) Human protein MCM6 on HeLa cell chromatin. J Biol Chem 273:7320–7325

    Article  PubMed  CAS  Google Scholar 

  • Hozak P, Hassan AB, Jackson DA, Cook PR (1993) Visualization of replication factories attached to nucleoskeleton. Cell 73:361–373

    Article  PubMed  CAS  Google Scholar 

  • Ibarra A, Schwob E, Mendez J (2008) Excess MCM proteins protect human cells from replicative stress by licensing backup origins of replication. Proc Natl Acad Sci USA 105:8956–8961

    Article  PubMed  CAS  Google Scholar 

  • Ilves I, Petojevic T, Pesavento JJ, Botchan MR (2010) Activation of the MCM2–7 helicase by association with Cdc45 and GINS proteins. Mol Cell 37:247–258

    Article  PubMed  CAS  Google Scholar 

  • Ishimi Y, Komamura-Kohno Y (2001) Phosphorylation of Mcm4 at specific sites by cyclin-dependent kinase leads to loss of Mcm4,6,7 helicase activity. J Biol Chem 276:34428–34433

    Article  PubMed  CAS  Google Scholar 

  • Jackson DA, Pombo A (1998) Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J Cell Biol 140:1285–1295

    Article  PubMed  CAS  Google Scholar 

  • Koberna K, Ligasova A, Malinsky J, Pliss A, Siegel AJ, Cvackova Z, Fidlerova H, Masata M, Fialova M, Raska I, Berezney R (2005) Electron microscopy of DNA replication in 3-D: evidence for similar-sized replication foci throughout S-phase. J Cell Biochem 94:126–138

    Article  PubMed  CAS  Google Scholar 

  • Krude T, Musahl C, Laskey RA, Knippers R (1996) Human replication proteins hCdc21, hCdc46 and P1Mcm3 bind chromatin uniformly before S-phase and are displaced locally during DNA replication. J Cell Sci 109(Pt 2):309–318

    PubMed  CAS  Google Scholar 

  • Kuipers MA, Stasevich TJ, Sasaki T, Wilson KA, Hazelwood KL, McNally JG, Davidson MW, Gilbert DM (2011) Highly stable loading of Mcm proteins onto chromatin in living cells requires replication to unload. J Cell Biol 192:29–41

    Article  PubMed  CAS  Google Scholar 

  • Laskey RA, Madine MA (2003) A rotary pumping model for helicase function of MCM proteins at a distance from replication forks. EMBO Rep 4:26–30

    Article  PubMed  CAS  Google Scholar 

  • Li J, Deng M, Wei Q, Liu T, Tong X, Ye X (2011) Phosphorylation of MCM3 protein by cyclin E/cyclin-dependent kinase 2 (Cdk2) regulates its function in cell cycle. J Biol Chem 286:39776–39785

    Article  PubMed  CAS  Google Scholar 

  • Ma H, Samarabandu J, Devdhar RS, Acharya R, Cheng PC, Meng C, Berezney R (1998) Spatial and temporal dynamics of DNA replication sites in mammalian cells. J Cell Biol 143:1415–1425

    Article  PubMed  CAS  Google Scholar 

  • Madine MA, Khoo CY, Mills AD, Laskey RA (1995) MCM3 complex required for cell cycle regulation of DNA replication in vertebrate cells. Nature 375:421–424

    Article  PubMed  CAS  Google Scholar 

  • Masata M, Malinsky J, Fidlerova H, Smirnov E, Raska I (2005) Dynamics of replication foci in early S phase as visualized by cross-correlation function. J Struct Biol 151:61–68

    Article  PubMed  CAS  Google Scholar 

  • Masata M, Juda P, Raska O, Cardoso MC, Raska I (2011) A fraction of MCM 2 proteins remain associated with replication foci during a major part of S phase. Folia Biol (Praha) 57:3–11

    CAS  Google Scholar 

  • Mendez J, Stillman B (2000) Chromatin association of human origin recognition complex, cdc6, and minichromosome maintenance proteins during the cell cycle: assembly of prereplication complexes in late mitosis. Mol Cell Biol 20:8602–8612

    Article  PubMed  CAS  Google Scholar 

  • Moldovan GL, Pfander B, Jentsch S (2007) PCNA, the maestro of the replication fork. Cell 129:665–679

    Article  PubMed  CAS  Google Scholar 

  • Nakamura H, Morita T, Sato C (1986) Structural organizations of replicon domains during DNA synthetic phase in the mammalian nucleus. Exp Cell Res 165:291–297

    Article  PubMed  CAS  Google Scholar 

  • Nakayasu H, Berezney R (1989) Mapping replicational sites in the eucaryotic cell nucleus. J Cell Biol 108:1–11

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama A, Frappier L, Mechali M (2011) MCM-BP regulates unloading of the MCM2–7 helicase in late S phase. Genes Dev 25:165–175

    Article  PubMed  CAS  Google Scholar 

  • Philimonenko AA, Jackson DA, Hodny Z, Janacek J, Cook PR, Hozak P (2004) Dynamics of DNA replication: an ultrastructural study. J Struct Biol 148:279–289

    Article  PubMed  CAS  Google Scholar 

  • Prasanth SG, Mendez J, Prasanth KV, Stillman B (2004) Dynamics of pre-replication complex proteins during the cell division cycle. Philos Trans R Soc Lond B Biol Sci 359:7–16

    Article  PubMed  CAS  Google Scholar 

  • Remus D, Beuron F, Tolun G, Griffith JD, Morris EP, Diffley JF (2009) Concerted loading of Mcm2–7 double hexamers around DNA during DNA replication origin licensing. Cell 139:719–730

    Article  PubMed  CAS  Google Scholar 

  • Ritzi M, Baack M, Musahl C, Romanowski P, Laskey RA, Knippers R (1998) Human minichromosome maintenance proteins and human origin recognition complex 2 protein on chromatin. J Biol Chem 273:24543–24549

    Article  PubMed  CAS  Google Scholar 

  • Sadoni N, Cardoso MC, Stelzer EH, Leonhardt H, Zink D (2004) Stable chromosomal units determine the spatial and temporal organization of DNA replication. J Cell Sci 117:5353–5365

    Article  PubMed  CAS  Google Scholar 

  • Salic A, Mitchison TJ (2008) A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci USA 105:2415–2420

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Berrondo J, Mesa P, Ibarra A, Martinez-Jimenez MI, Blanco L, Mendez J, Boskovic J, Montoya G (2012) Molecular architecture of a multifunctional MCM complex. Nucleic Acids Res 40:1366–1380

    Article  PubMed  CAS  Google Scholar 

  • Takahashi TS, Wigley DB, Walter JC (2005) Pumps, paradoxes and ploughshares: mechanism of the MCM2–7 DNA helicase. Trends Biochem Sci 30:437–444

    Article  PubMed  CAS  Google Scholar 

  • Todorov IT, Attaran A, Kearsey SE (1995) BM28, a human member of the MCM2–3–5 family, is displaced from chromatin during DNA replication. J Cell Biol 129:1433–1445

    Article  PubMed  CAS  Google Scholar 

  • Vogelstein B, Pardoll DM, Coffey DS (1980) Supercoiled loops and eucaryotic DNA replication. Cell 22:79–85

    Article  PubMed  CAS  Google Scholar 

  • Wong PG, Winter SL, Zaika E, Cao TV, Oguz U, Koomen JM, Hamlin JL, Alexandrow MG (2011) Cdc45 limits replicon usage from a low density of preRCs in mammalian cells. PLoS One 6:e17533

    Article  PubMed  CAS  Google Scholar 

  • Woodward AM, Gohler T, Luciani MG, Oehlmann M, Ge X, Gartner A, Jackson DA, Blow JJ (2006) Excess Mcm2–7 license dormant origins of replication that can be used under conditions of replicative stress. J Cell Biol 173:673–683

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to all members of the CNIO DNA Replication and Chromosome Dynamics Groups for the insightful discussions and Oscar Fernández-Capetillo and Almudena R. Ramiro for the useful comments on the manuscript. This work was supported by the Spanish Ministry of Science and Innovation (BFU2010-21467 and Consolider CSD2007-00015 to J.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Méndez.

Additional information

Communicated by John Diffley

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Figure S1

Incorporation of EdU to DNA does not affect cell cycle progression. a Flow cytometric detection of EdU incorporation (y-axis) vs DNA content (x-axis) in HeLa cells previously labeled for 30 min with 10 μM EdU. Cells were processed and analyzed immediately (NC, no chase), or 2 h, 4 h, 16 h after the EdU pulse. b The experimental design is similar to that of part a, but cells were treated with Triton X100 to pre-extract soluble proteins prior to flow cytometry, and chromatin-bound PCNA, which is only present in S phase cells, was immunodetected (y-axis). EdU-positive cells, labeled in blue, can be seen in S phase immediately after the pulse (NC), in G2/M and G1 (8 h) and back in S phase (24 h). (JPEG 109 kb)

High-resolution image (TIFF 2931 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aparicio, T., Megías, D. & Méndez, J. Visualization of the MCM DNA helicase at replication factories before the onset of DNA synthesis. Chromosoma 121, 499–507 (2012). https://doi.org/10.1007/s00412-012-0381-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-012-0381-x

Keywords

Navigation