Skip to main content

Advertisement

Log in

Inner nuclear membrane proteins: impact on human disease

  • Mini-Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

In the past decade, the inner nuclear membrane has become a focus of research on inherited diseases. A heterogeneous group of genetic disorders known as laminopathies have been described that result from mutations in genes encoding nuclear lamins, intermediate filament proteins associated with the inner nuclear membrane. Mutations in genes encoding integral inner nuclear membrane proteins, many of which bind to nuclear lamins, also cause diseases that sometimes are very similar to those caused by lamin gene mutations. The pathogenic mechanisms that underlie these diseases, which often selectively affect different tissues or organ systems despite the near-ubiquitous expression of the proteins, are only beginning to be elucidated. The unfolding story of the laminopathies provides a remarkable example of how research in basic cell biology has impacted upon medicine and human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aebi U, Cohn J, Buhle L, Gerace L (1986) The nuclear lamina is a meshwork of intermediate-type filaments. Nature 323:560–564

    Article  PubMed  CAS  Google Scholar 

  • Agarwal AK, Fryns JP, Auchus RJ, Garg A (2003) Zinc metalloproteinase, ZMPSTE24, is mutated in mandibuloacral dysplasia. Hum Mol Genet 12:1995–2001

    Article  PubMed  CAS  Google Scholar 

  • Agarwal AK, Kazachkova I, Ten S, Garg A (2008) Severe mandibuloacral dysplasia-associated lipodystrophy and progeria in a young girl with a novel homozygous Arg527Cys LMNA mutation. J Clin Endocrinol Metab 93:4617–4623

    Article  PubMed  CAS  Google Scholar 

  • Akter R, Rivas D, Geneau G, Drissi H, Duque G (2009) Effect of lamin A/C knockdown on osteoblast differentiation and function. J Bone Miner Res 24:283–293

    Article  PubMed  CAS  Google Scholar 

  • Astejada MN, Goto K, Nagano A, Ura S, Noguchi S, Nonaka I et al (2007) Emerinopathy and laminopathy clinical, pathological and molecular features of muscular dystrophy with nuclear envelopathy in Japan. Acta Myol 26:159–164

    PubMed  CAS  Google Scholar 

  • Attali R, Warwar N, Israel A, Gurt I, McNally E, Puckelwartz M et al (2009) Mutation of SYNE-1, encoding an essential component of the nuclear lamina, is responsible for autosomal recessive arthrogryposis. Hum Mol Genet 18:3462–3469

    Article  PubMed  CAS  Google Scholar 

  • Bailer SM, Eppenberger HM, Griffiths G, Nigg EA (1991) Characterization of A 54-kD protein of the inner nuclear membrane: evidence for cell cycle-dependent interaction with the nuclear lamina. J Cell Biol 114:389–400

    Article  PubMed  CAS  Google Scholar 

  • Ben Yaou R, Navarro C, Quijano-Roy S, Bertrand AT, Massart C, De Sandre-Giovannoli A et al (2011) Type B mandibuloacral dysplasia with congenital myopathy due to homozygous ZMPSTE24 missense mutation. Eur J Hum Genet 19:647–654

    Article  PubMed  CAS  Google Scholar 

  • Benson EK, Lee SW, Aaronson SA (2010) Role of progerin-induced telomere dysfunction in HGPS premature cellular senescence. J Cell Sci 123:2605–2612

    Article  PubMed  CAS  Google Scholar 

  • Best S, Salvati F, Kallo J, Garner C, Height S, Thein SL et al (2003) Lamin B-receptor mutations in Pelger-Huët anomaly. Br J Haematol 123:542–544

    Article  PubMed  CAS  Google Scholar 

  • Biamonti G, Giacca M, Perini G, Contreas G, Zentilin L, Weighardt F et al (1992) The gene for a novel human lamin maps at a highly transcribed locus of chromosome 19 which replicates at the onset of S-phase. Mol Cell Biol 12:3499–3506

    PubMed  CAS  Google Scholar 

  • Bione S, Maestrini E, Rivella S, Mancini M, Regis S, Romeo G et al (1994) Identification of a novel X-linked gene responsible for Emery–Dreifuss muscular dystrophy. Nat Genet 8:323–327

    Article  PubMed  CAS  Google Scholar 

  • Blobel G (1985) Gene gating: a hypothesis. Proc Natl Acad Sci USA 82:8527–8529

    Article  PubMed  CAS  Google Scholar 

  • Boguslavsky RL, Stewart CL, Worman HJ (2006) Nuclear lamin A inhibits adipocyte differentiation: implications for Dunnigan-type familial partial lipodystrophy. Hum Mol Genet 15:653–663

    Article  PubMed  CAS  Google Scholar 

  • Bonne G, Raffaele Di Barletta M, Varnous S, Becane HM, Hammouda EH, Merlini L et al (1999) Mutations in the gene encoding lamin A/C cause autosomal dominant Emery–Dreifuss muscular dystrophy. Nat Genet 21:285–288

    Article  PubMed  CAS  Google Scholar 

  • Bonne G, Mercuri E, Muchir A, Urtizberea A, Bécane HM, Recan D et al (2000) Clinical and molecular genetic spectrum of autosomal dominant Emery–Dreifuss muscular dystrophy due to mutations of the lamin A/C gene. Ann Neurol 48:170–180

    Article  PubMed  CAS  Google Scholar 

  • Brodsky GL, Muntoni F, Miocic S, Sinagra G, Sewry C, Mestroni L (2000) Lamin A/C gene mutation associated with dilated cardiomyopathy with variable skeletal muscle involvement. Circulation 101:473–476

    PubMed  CAS  Google Scholar 

  • Broers JL, Peeters EA, Kuijpers HJ, Endert J, Bouten CV, Oomens CW et al (2004) Decreased mechanical stiffness in LMNA−/− cells is caused by defective nucleo-cytoskeletal integrity: implications for the development of laminopathies. Hum Mol Genet 13:2567–2580

    Article  PubMed  CAS  Google Scholar 

  • Cai M, Huang Y, Ghirlando R, Wilson KL, Craigie R, Clore GM (2001) Solution structure of the constant region of nuclear envelope protein LAP2 reveals two LEM-domain structures: one binds BAF and the other binds DNA. EMBO J 20:4399–4407

    Article  PubMed  CAS  Google Scholar 

  • Cao H, Hegele RA (2000) Nuclear lamin A/C R482Q mutation in Canadian kindreds with Dunnigan-type familial partial lipodystrophy. Hum Mol Genet 9:109–112

    Article  PubMed  CAS  Google Scholar 

  • Cao K, Blair CD, Faddah DA, Kieckhaefer JE, Olive M, Erdos MR et al (2011a) Progerin and telomere dysfunction collaborate to trigger cellular senescence in normal human fibroblasts. J Clin Invest 121:2833–2844

    Article  PubMed  CAS  Google Scholar 

  • Cao K, Graziotto JJ, Blair CD, Mazzulli JR, Erdos MR, Krainc D et al (2011b) Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in Hutchinson–Gilford progeria syndrome cells. Sci Transl Med 3:89ra58

    Google Scholar 

  • Capell BC, Olive M, Erdos MR, Cao K, Faddah DA, Tavarez UL et al (2008) A farnesyltransferase inhibitor prevents both the onset and late progression of cardiovascular disease in a progeria mouse model. Proc Natl Acad Sci USA 105:15902–15907

    Article  PubMed  CAS  Google Scholar 

  • Caron M, Auclair M, Donadille B, Béréziat V, Guerci B, Laville M et al (2007) Human lipodystrophies linked to mutations in A-type lamins and to HIV protease inhibitor therapy are both associated with prelamin A accumulation, oxidative stress and premature cellular senescence. Cell Death Differ 14:1759–1767

    Article  PubMed  CAS  Google Scholar 

  • Caux F, Dubosclard E, Lascols O, Buendia B, Chazouillères O, Cohen A et al (2003) A new clinical condition linked to a novel mutation in lamins A and C with generalized lipoatrophy, insulin-resistant diabetes, disseminated leukomelanodermic papules, liver steatosis, and cardiomyopathy. J Clin Endocrinol Metab 88:1006–1013

    Article  PubMed  CAS  Google Scholar 

  • Charniot JC, Bonnefont-Rousselot D, Marchand C, Zerhouni K, Vignat N, Peynet J et al (2007) Oxidative stress implication in a new phenotype of amyotrophic quadricipital syndrome with cardiac involvement due to lamin A/C mutation. Free Radic Res 41:424–431

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Lee L, Kudlow BA, Dos Santos HG, Sletvold O, Shafeghati Y et al (2003) LMNA mutations in atypical Werner’s syndrome. Lancet 362:440–445

    Article  PubMed  CAS  Google Scholar 

  • Clayton P, Fischer B, Mann A, Mansour S, Rossier E, Veen M et al (2010) Mutations causing Greenberg dysplasia but not Pelger anomaly uncouple enzymatic from structural functions of a nuclear membrane protein. Nucleus 1:354–366

    Article  PubMed  Google Scholar 

  • Clements L, Manilal S, Love DR, Morris GE (2000) Direct interaction between emerin and lamin A. Biochem Biophys Res Commun 267:709–714

    Article  PubMed  CAS  Google Scholar 

  • Coffinier C, Chang SY, Nobumori C, Tu Y, Farber EA, Toth JI et al (2010) Abnormal development of the cerebral cortex and cerebellum in the setting of lamin B2 deficiency. Proc Natl Acad Sci USA 107:5076–5081

    Article  PubMed  CAS  Google Scholar 

  • Coffinier C, Jung HJ, Nobumori C, Chang S, Tu Y, Barnes RH 2nd et al (2011) Deficiencies in lamin B1 and lamin B2 cause neurodevelopmental defects and distinct nuclear shape abnormalities in neurons. Mol Biol Cell 22:4683–4693

    Article  PubMed  CAS  Google Scholar 

  • Corrigan DP, Kuszczak D, Rusinol AE, Thewke DP, Hrycyna CA, Michaelis S et al (2005) Prelamin A endoproteolytic processing in vitro by recombinant Zmpste24. Biochem J 387:129–138

    Article  PubMed  CAS  Google Scholar 

  • Crisp M, Liu Q, Roux K, Rattner JB, Shanahan C, Burke B et al (2006) Coupling of the nucleus and cytoplasm: role of the LINC complex. J Cell Biol 172:41–53

    Article  PubMed  CAS  Google Scholar 

  • Cutler DA, Sullivan T, Marcus-Samuels B, Stewart CL, Reitman ML (2002) Characterization of adiposity and metabolism in Lmna-deficient mice. Biochem Biophys Res Commun 291:522–527

    Article  PubMed  CAS  Google Scholar 

  • Dauer WT, Worman HJ (2009) The nuclear envelope as a signaling node in development and disease. Dev Cell 17:626–638

    Article  PubMed  CAS  Google Scholar 

  • De Sandre-Giovannoli A, Chaouch M, Kozlov S, Vallat JM, Tazir M, Kassouri N et al (2002) Homozygous defects in LMNA, encoding lamin A/C nuclear-envelope proteins, cause autosomal recessive axonal neuropathy in human (Charcot–Marie–Tooth disorder type 2) and mouse. Am J Hum Genet 70:726–736

    Article  PubMed  Google Scholar 

  • De Sandre-Giovannoli A, Bernard R, Cau P, Navarro C, Amiel J, Boccaccio I et al (2003) Lamin A truncation in Hutchinson–Gilford progeria. Science 300:2055

    Article  PubMed  Google Scholar 

  • Dean JCS, Gray ES, Stewart KN, Brown T, Lloyd DJ, Smith NC (1993) Restrictive dermopathy: a disorder of skin differentiation with abnormal integrin expression. Clin Genet 44:287–291

    Article  PubMed  CAS  Google Scholar 

  • Decaudain A, Vantyghem MC, Guerci B, Hécart AC, Auclair M, Reznik Y et al (2007) New metabolic phenotypes in laminopathies: LMNA mutations in patients with severe metabolic syndrome. J Clin Endocrinol Metab 92:4835–4844

    Article  PubMed  CAS  Google Scholar 

  • Dechat T, Korbei B, Vaughan OA, Vlcek S, Hutchison CJ, Foisner R (2000) Lamina-associated polypeptide 2alpha binds intranuclear A-type lamins. J Cell Sci 113:3473–3484

    PubMed  CAS  Google Scholar 

  • Dechat T, Adam SA, Taimen P, Shimi T, Goldman RD (2010) Nuclear lamins. Cold Spring Harb Perspect Biol 2:a000547

    Article  PubMed  CAS  Google Scholar 

  • Decker ML, Chavez E, Vulto I, Lansdorp PM (2009) Telomere length in Hutchinson–Gilford progeria syndrome. Mech Ageing Dev 130:377–383

    Article  PubMed  CAS  Google Scholar 

  • Dhe-Paganon S, Werner ED, Chi YI, Shoelson SE (2002) Structure of the globular tail of nuclear lamin. J Biol Chem 277:17381–17384

    Article  PubMed  CAS  Google Scholar 

  • Dittmer TA, Misteli T (2011) The lamin protein family. Genome Biol 12:222

    Article  PubMed  CAS  Google Scholar 

  • Doucet CM, Hetzer MW (2010) Nuclear pore biogenesis into an intact nuclear envelope. Chromosoma 119:469–477

    Article  PubMed  Google Scholar 

  • Dutour A, Roll P, Gaborit B, Courrier S, Alessi MC, Tregouet DA et al (2011) High prevalence of laminopathies among patients with metabolic syndrome. Hum Mol Genet 20:3779–3786

    Article  PubMed  CAS  Google Scholar 

  • Eriksson M, Brown WT, Gordon LB, Glynn MW, Singe J, Scott L et al (2003) Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature 423:293–298

    Article  PubMed  CAS  Google Scholar 

  • Espada J, Varela I, Flores I, Ugalde AP, Cadiñanos J, Pendás AM et al (2008) Nuclear envelope defects cause stem cell dysfunction in premature-aging mice. J Cell Biol 181:9–13

    Article  CAS  Google Scholar 

  • Fairley EA, Kendrick-Jones J, Ellis JA (1999) The Emery–Dreifuss muscular dystrophy phenotype arises from aberrant targeting and binding of emerin at the inner nuclear membrane. J Cell Sci 112:2571–2582

    PubMed  CAS  Google Scholar 

  • Fatkin D, MacRae C, Sasaki T, Wolff MR, Porcu M, Frenneaux M et al (1999) Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N Engl J Med 341:1715–1724

    Article  PubMed  CAS  Google Scholar 

  • Fisher DZ, Chaudhary N, Blobel G (1986) cDNA sequencing of nuclear lamins A and C reveals primary and secondary structural homology to intermediate filament proteins. Proc Natl Acad Sci USA 83:6450–6454

    Article  PubMed  CAS  Google Scholar 

  • Foisner R, Gerace L (1993) Integral membrane proteins of the nuclear envelope interact with lamins and chromosomes, and binding is modulated by mitotic phosphorylation. Cell 73:1267–1279

    Article  PubMed  CAS  Google Scholar 

  • Folker ES, Östlund C, Luxton GW, Worman HJ, Gundersen GG (2011) Lamin A variants that cause striated muscle disease are defective in anchoring transmembrane actin-associated nuclear lines for nuclear movement. Proc Natl Acad Sci USA 108:131–136

    Article  PubMed  CAS  Google Scholar 

  • Fong LG, Ng JK, Meta M, Coté N, Yang SH, Stewart CL et al (2004) Heterozygosity for Lmna deficiency eliminates the progeria-like phenotypes in Zmpste24-deficient mice. Proc Natl Acad Sci USA 101:18111–18116

    Article  PubMed  CAS  Google Scholar 

  • Fong LG, Frost D, Meta M, Qiao X, Yang SH, Coffinier C et al (2006) A protein farnesyltransferase inhibitor ameliorates disease in a mouse model of progeria. Science 311:1621–1623

    Article  PubMed  CAS  Google Scholar 

  • Furukawa K, Hotta Y (1993) cDNA cloning of a germ cell specific lamin B3 from mouse spermatocytes and analysis of its function by ectopic expression in somatic cells. EMBO J 12:97–110

    PubMed  CAS  Google Scholar 

  • Garg A (2011) Lipodystrophies: genetic and acquired body fat disorders. J Clin Endocrinol Metab 96:3313–3325

    Article  PubMed  CAS  Google Scholar 

  • Garg A, Speckman RA, Bowcock AM (2002) Multisystem dystrophy syndrome due to novel missense mutations in the amino-terminal head and alpha-helical rod domains of the lamin A/C gene. Am J Med 112:549–555

    Article  PubMed  CAS  Google Scholar 

  • Garg A, Subramanyam L, Agarwal AK, Simha V, Levine B, D’Apice MR et al (2009) Atypical progeroid syndrome due to heterozygous missense LMNA mutations. J Clin Endocrinol Metab 94:4971–4983

    Article  PubMed  CAS  Google Scholar 

  • Gaudy-Marqueste C, Roll P, Esteves-Vieira V, Weiller PJ, Grob JJ, Cau P et al (2010) LBR mutation and nuclear envelope defects in a patient affected with Reynolds syndrome. J Med Genet 47:361–370

    Article  PubMed  CAS  Google Scholar 

  • Goizet C, Yaou RB, Demay L, Richard P, Bouillot S, Rouanet M et al (2004) A new mutation of the lamin A/C gene leading to autosomal dominant axonal neuropathy, muscular dystrophy, cardiac disease, and leuconychia. J Med Genet 41:e29

    Article  PubMed  CAS  Google Scholar 

  • Goldman AE, Maul G, Steinert PM, Yang HY, Goldman RD (1986) Keratin-like proteins that coisolate with intermediate filaments of BHK-21 cells are nuclear lamins. Proc Natl Acad Sci USA 83:3839–3843

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Alegre P, Paulson HL (2004) Aberrant cellular behavior of mutant torsinA implicates nuclear envelope dysfunction in DYT1 dystonia. J Neurosci 24:2593–2601

    Article  PubMed  CAS  Google Scholar 

  • Goodchild RE, Dauer WT (2004) Mislocalization to the nuclear envelope: an effect of the dystonia-causing torsinA mutation. Proc Natl Acad Sci USA 101:847–852

    Article  PubMed  CAS  Google Scholar 

  • Goodchild RE, Dauer WT (2005) The AAA+protein torsinA interacts with a conserved domain present in LAP1 and a novel ER protein. J Cell Biol 168:855–862

    Article  PubMed  CAS  Google Scholar 

  • Gros-Louis F, Dupre N, Dion P, Fox MA, Laurent S, Verreault S et al (2007) Mutations in SYNE1 lead to a newly discovered form of autosomal recessive cerebellar ataxia. Nat Genet 39:80–85

    Article  PubMed  CAS  Google Scholar 

  • Guelen L, Pagie L, Brasset E, Meuleman W, Faza MB, Talhout W et al (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453:948–951

    Article  PubMed  CAS  Google Scholar 

  • Guilly MN, Bensussan A, Bourge JF, Bornens M, Courvalin JC (1987) A human T lymphoblastic cell line lacks lamins A and C. EMBO J 6:3795–3799

    PubMed  CAS  Google Scholar 

  • Hegele RA, Cao H, Liu DM, Costain GA, Charlton-Menys V, Rodger NW et al (2006) Sequencing of the reannotated LMNB2 gene reveals novel mutations in patients with acquired partial lipodystrophy. Am J Hum Genet 79:383–389

    Article  PubMed  CAS  Google Scholar 

  • Hellemans J, Preobrazhenska O, Willaert A, Debeer P, Verdonk PCM, Costa T et al (2004) Loss-of-function mutations in LEMD3 result in osteopoikilosis, Buschke-Ollendorff syndrome and melorheostosis. Nat Genet 36:1213–1218

    Article  PubMed  CAS  Google Scholar 

  • Hernández L, Roux KJ, Wong ES, Mounkes LC, Mutalif R, Navasankari R et al (2010) Functional coupling between the extracellular matrix and nuclear lamina by Wnt signaling in progeria. Dev Cell 19:413–425

    Article  PubMed  CAS  Google Scholar 

  • Ho JC, Zhou T, Lai WH, Huang Y, Chan YC, Li X et al (2011) Generation of induced pluripotent stem cell lines from 3 distinct laminopathies bearing heterogeneous mutations in lamin A/C. Aging (Albany NY) 3:380–390

    CAS  Google Scholar 

  • Hoffmann K, Dreger CK, Olins AL, Olins DE, Shultz LD, Lucke B et al (2002) Mutations in the gene encoding the lamin B receptor produce an altered nuclear morphology in granulocytes (Pelger-Huët anomaly). Nat Genet 31:410–414

    PubMed  CAS  Google Scholar 

  • Holmer L, Pezhman A, Worman HJ (1998) The human lamin B receptor/sterol reductase multigene family. Genomics 54:469–476

    Article  PubMed  CAS  Google Scholar 

  • Houben F, Willems CH, Declercq IL, Hochstenbach K, Kamps MA, Snoeckx LH et al (2009) Disturbed nuclear orientation and cellular migration in A-type lamin deficient cells. Biochim Biophys Acta 1793:312–324

    Article  PubMed  CAS  Google Scholar 

  • Kim CE, Perez A, Perkins G, Ellisman MH, Dauer WT (2010) A molecular mechanism underlying the neural-specific defect in torsinA mutant mice. Proc Natl Acad Sci USA 107:9861–9866

    Article  PubMed  CAS  Google Scholar 

  • Kirschner J, Brune T, Wehnert M, Denecke J, Wasner C, Feuer A et al (2005) p.S143F mutation in lamin A/C: a new phenotype combining myopathy and progeria. Ann Neurol 57:148–151

    Article  PubMed  CAS  Google Scholar 

  • Kite GL (1913) The relative permeability of the surface and interior portions of the cytoplasm of animal and plant cells. Biol Bull 25:1–7

    Google Scholar 

  • Kondé E, Bourgeois B, Tellier-Lebegue C, Wu W, Pérez J, Caputo S et al (2010) Structural analysis of the Smad2-MAN1 interaction that regulates transforming growth factor-β signaling at the inner nuclear membrane. Biochemistry 49:8020–8032

    Article  PubMed  CAS  Google Scholar 

  • Krimm I, Östlund C, Gilquin B, Couprie J, Hossenlopp P, Mornon JP et al (2002) The Ig-like structure of the C-terminal domain of lamin A/C, mutated in muscular dystrophies, cardiomyopathy, and partial lipodystrophy. Structure 10:811–823

    Article  PubMed  CAS  Google Scholar 

  • Kudlow BA, Jameson SA, Kennedy BK (2005) HIV protease inhibitors block adipocyte differentiation independently of lamin A/C. AIDS 19:1565–1573

    Article  PubMed  CAS  Google Scholar 

  • Kudlow BA, Stanfel MN, Burtner CR, Johnston ED, Kennedy BK (2008) Suppression of proliferative defects associated with processing-defective lamin A mutants by hTERT or inactivation of p53. Mol Biol Cell 19:5238–5248

    Article  PubMed  CAS  Google Scholar 

  • Laguri C, Gilquin B, Wolff N, Romi-Lebrun R, Courchay K, Callebaut I et al (2001) Structural characterization of the LEM motif common to three human inner nuclear membrane proteins. Structure 9:503–511

    Article  PubMed  CAS  Google Scholar 

  • Lammerding J, Schulze PC, Takahashi T, Kozlov S, Sullivan T, Kamm RD et al (2004) Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J Clin Invest 113:370–378

    PubMed  CAS  Google Scholar 

  • Le Dour C, Schneebeli S, Bakiri F, Darcel F, Jacquemont ML, Maubert MA et al (2011) A homozygous mutation of prelamin-A preventing its farnesylation and maturation leads to a severe lipodystrophic phenotype: new insights into the pathogenicity of nonfarnesylated prelamin-A. J Clin Endocrinol Metab 96:E856–E862

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Hale CM, Panorchan P, Khatau SB, George JP, Tseng Y et al (2007) Nuclear lamin A/C deficiency induces defects in cell mechanics, polarization, and migration. Biophys J 93:2542–2552

    Article  PubMed  CAS  Google Scholar 

  • Li W, Yeo LS, Vidal C, McCorquodale T, Herrmann M, Fatkin D et al (2011) Decreased bone formation and osteopenia in lamin A/C-deficient mice. PLoS One 6:e19313

    Article  PubMed  CAS  Google Scholar 

  • Liang WC, Mitsuhashi H, Keduka E, Nonaka I, Noguchi S, Nishino I et al (2011) TMEM43 mutations in Emery–Dreifuss muscular dystrophy-related myopathy. Ann Neurol 69:1005–10013

    Article  PubMed  CAS  Google Scholar 

  • Lin ST, Fu YH (2009) miR-23 regulation of lamin B1 is crucial for oligodendrocyte development and myelination. Dis Model Mech 2:178–188

    Article  PubMed  CAS  Google Scholar 

  • Lin F, Worman HJ (1993) Structural organization of the human gene encoding nuclear lamin A and nuclear lamin C. J Biol Chem 268:16321–16326

    PubMed  CAS  Google Scholar 

  • Lin F, Worman HJ (1995) Structural organization of the human gene (LMNB1) encoding nuclear lamin B1. Genomics 27:230–236

    Article  PubMed  CAS  Google Scholar 

  • Lin F, Blake DL, Callebaut I, Skerjanc IS, Holmer L, McBurney MW et al (2000) MAN1, an inner nuclear membrane protein that shares the LEM domain with lamina-associated polypeptide 2 and emerin. J Biol Chem 275:4840–4847

    Article  PubMed  CAS  Google Scholar 

  • Lin F, Morrison JM, Wu W, Worman HJ (2005) MAN1, an integral protein of the inner nuclear membrane, binds Smad2 and Smad3 and antagonizes transforming growth factor-beta signaling. Hum Mol Genet 14:437–445

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Wang J, Chan KM, Tjia WM, Deng W, Guan X et al (2005) Genomic instability in laminopathy-based premature aging. Nat Med 11:780–785

    Article  PubMed  CAS  Google Scholar 

  • Liu YY, Rusinol A, Sinensky M, Wang YJ, Zou Y (2006) DNA damage responses in progeroid syndromes arise from defective maturation of prelamin A. J Cell Sci 119:4644–4649

    Article  PubMed  CAS  Google Scholar 

  • Liu GH, Barkho BZ, Ruiz S, Diep D, Qu J, Yang SL et al (2011) Recapitulation of premature ageing with iPSCs from Hutchinson–Gilford progeria syndrome. Nature 472:221–225

    Article  PubMed  CAS  Google Scholar 

  • Lloyd DJ, Trembath RC, Shackleton S (2002) A novel interaction between lamin A and SREBP1: implications for partial lipodystrophy and other laminopathies. Hum Mol Genet 11:769–777

    Article  PubMed  CAS  Google Scholar 

  • Lu JT, Muchir A, Nagy PL, Worman HJ (2011) LMNA cardiomyopathy: cell biology and genetics meet clinical medicine. Dis Model Mech 4:562–568

    Article  PubMed  Google Scholar 

  • Luxton GW, Gomes ER, Folker ES, Vintinner E, Gundersen GG (2010) Linear arrays of nuclear envelope proteins harness retrograde actin flow for nuclear movement. Science 329:956–959

    Article  PubMed  CAS  Google Scholar 

  • Manilal S, Nguyen TM, Sewry CA, Morris GE (2006) The Emery–Dreifuss muscular dystrophy protein, emerin, is a nuclear membrane protein. Hum Mol Genet 5:801–808

    Article  Google Scholar 

  • McClintock D, Ratner D, Lokuge M, Owens DM, Gordon LB, Collins FS et al (2007) The mutant form of lamin A that causes Hutchinson–Gilford progeria is a biomarker of cellular aging in human skin. PLoS One 2:e1269

    Article  PubMed  CAS  Google Scholar 

  • McKeon FD, Kirschner MW, Caput D (1986) Homologies in both primary and secondary structure between nuclear envelope and intermediate filament proteins. Nature 319:463–468

    Article  PubMed  CAS  Google Scholar 

  • Méndez-López I (2011) Laminopathies: nuclear lamina diseases. Med Clin (Barc) In press

  • Merideth MA, Gordon LB, Clauss S, Sachdev V, Smith AC, Perry MB et al (2008) Phenotype and course of Hutchinson–Gilford progeria syndrome. N Engl J Med 358:592–604

    Article  PubMed  CAS  Google Scholar 

  • Mewborn SK, Puckelwartz MJ, Abuisneineh F, Fahrenbach JP, Zhang Y, MacLeod H (2010) Altered chromosomal positioning, compaction, and gene expression with a lamin A/C gene mutation. PLoS One 5:e14342

    Article  PubMed  CAS  Google Scholar 

  • Moulson CL, Go G, Gardner JM, van der Wal AC, Smitt JH, van Hagen JM et al (2005) Homozygous and compound heterozygous mutations in ZMPSTE24 cause the laminopathy restrictive dermopathy. J Invest Dermatol 125:913–919

    Article  PubMed  CAS  Google Scholar 

  • Muchir A, Bonne G, van der Kooi AJ, van Meegen M, Baas F, Bolhuis PA et al (2000) Identification of mutations in the gene encoding lamins A/C in autosomal dominant limb girdle muscular dystrophy with atrioventricular conduction disturbances (LGMD1B). Hum Mol Genet 9:1453–1459

    Article  PubMed  CAS  Google Scholar 

  • Muchir A, Pavlidis P, Bonne G, Hayashi YK, Worman HJ (2007a) Activation of MAPK in hearts of EMD null mice: similarities between mouse models of X-linked and autosomal dominant Emery–Dreifuss muscular dystrophy. Hum Mol Genet 16:1884–1895

    Article  PubMed  CAS  Google Scholar 

  • Muchir A, Pavlidis P, Decostre V, Herron AJ, Arimura T, Bonne G et al (2007b) Activation of MAPK pathways links LMNA mutations to cardiomyopathy in Emery–Dreifuss muscular dystrophy. J Clin Invest 117:1282–1293

    Article  PubMed  CAS  Google Scholar 

  • Muchir A, Shan J, Bonne G, Lehnart SE, Worman HJ (2009) Inhibition of extracellular signal-regulated kinase signaling to prevent cardiomyopathy caused by mutation in the gene encoding A-type lamins. Hum Mol Genet 18:241–247

    Article  PubMed  CAS  Google Scholar 

  • Nagano A, Koga R, Ogawa M, Kurano Y, Kawada J, Okada R et al (2006) Emerin deficiency at the nuclear membrane in patients with Emery–Dreifuss muscular dystrophy. Nat Genet 12:254–259

    Article  Google Scholar 

  • Naismith TV, Heuser JE, Breakefield XO, Hanson PI (2004) TorsinA in the nuclear envelope. Proc Natl Acad Sci USA 101:7612–7617

    Article  PubMed  CAS  Google Scholar 

  • Nakajima N, Abe K (1995) Genomic structure of the mouse A-type lamin gene locus encoding somatic and germ cell-specific lamins. FEBS Lett 365:108–114

    Article  PubMed  CAS  Google Scholar 

  • Navarro CL, De Sandre-Giovannoli A, Bernard R, Boccaccio I, Boyer A, Genevieve D, Hadj-Rabia S (2004) Lamin A and ZMPSTE24 (FACE-1) defects cause nuclear disorganization and identity restrictive dermopathy as a lethal neonatal laminopathy. Hum Mol Genet 13:2493–2503

    Article  PubMed  CAS  Google Scholar 

  • Navarro CL, Cadiñanos J, De Sandre-Giovannoli A, Bernard R, Courrier S, Boccaccio I et al (2005) Loss of ZMPSTE24 (FACE-1) causes autosomal recessive restrictive dermopathy and accumulation of Lamin A precursors. Hum Mol Genet 14:1503–1513

    Article  PubMed  CAS  Google Scholar 

  • Novelli G, Muchir A, Sangiuolo F, Helbling-Leclerc A, D’Apice MR, Massart C et al (2002) Mandibuloacral dysplasia is caused by a mutation in LMNA-encoding lamin A/C. Am J Hum Genet 71:426–431

    Article  PubMed  CAS  Google Scholar 

  • Östlund C, Bonne G, Schwartz K, Worman HJ (2001) Properties of lamin A mutants found in Emery–Dreifuss muscular dystrophy, cardiomyopathy and Dunnigan-type partial lipodystrophy. J Cell Sci 114:4435–4445

    PubMed  Google Scholar 

  • Ozelius LJ, Hewett JW, Page CE, Bressman SB, Kramer PL, Shalish C et al (1997) The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein. Nat Genet 17:40–48

    Article  PubMed  CAS  Google Scholar 

  • Padiath QS, Saigoh K, Schiffmann R, Asahara H, Yamada T, Koeppen A et al (2006) Lamin B1 duplications cause autosomal dominant leukodystrophy. Nat Genet 38:1114–1123

    Article  PubMed  CAS  Google Scholar 

  • Pan D, Estévez-Salmerón LD, Stroschein SL, Zhu X, He J, Zhou S et al (2005) The integral inner nuclear membrane protein MAN1 physically interacts with the R-Smad proteins to repress signaling by the transforming growth factor-{beta} superfamily of cytokines. J Biol Chem 280:15992–16001

    Article  PubMed  CAS  Google Scholar 

  • Puckelwartz MJ, Kessler EJ, Kim G, Dewitt MM, Zhang Y, Earley JU et al (2010) Nesprin-1 mutations in human and murine cardiomyopathy. J Mol Cell Cardiol 48:600–608

    Article  PubMed  CAS  Google Scholar 

  • Puente XS, Quesada V, Osorio FG, Cabanillas R, Cadiñanos J, Fraile JM et al (2011) Exome sequencing and functional analysis identifies BANF1 mutation as the cause of a hereditary progeroid syndrome. Am J Hum Genet 88:650–656

    Article  PubMed  CAS  Google Scholar 

  • Quijano-Roy S, Mbieleu B, Bönnemann CG, Jeannet PY, Colomer J, Clarke NF et al (2008) De novo LMNA mutations cause a new form of congenital muscular dystrophy. Ann Neurol 64:177–186

    Article  PubMed  Google Scholar 

  • Raffaele Di Barletta M, Ricci E, Galluzzi G, Tonali P, Mora M et al (2000) Different mutations in the LMNA gene cause autosomal dominant and autosomal recessive Emery–Dreifuss muscular dystrophy. Am J Hum Genet 66:1407–1412

    Article  PubMed  CAS  Google Scholar 

  • Raharjo WH, Enarson P, Sullivan T, Stewart CL, Burke B (2001) Nuclear envelope defects associated with LMNA mutations cause dilated cardiomyopathy and Emery-Dreifuss muscular dystrophy. J Cell Sci 114:4447–4457

    Google Scholar 

  • Reddy KL, Zullo JM, Bertolino E, Singh H (2008) Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature 452:243–247

    Article  PubMed  CAS  Google Scholar 

  • Renard D, Fourcade G, Milhaud D, Bessis D, Esteves-Vieira V, Boyer A et al (2009) Novel LMNA mutation in atypical Werner syndrome presenting with ischemic disease. Stroke 40:e11–e14

    Article  PubMed  CAS  Google Scholar 

  • Renou L, Stora S, Yaou RB, Volk M, Sinkovec M, Demay L et al (2008) Heart–hand syndrome of Slovenian type: a new kind of laminopathy. J Med Genet 45:666–671

    Article  PubMed  CAS  Google Scholar 

  • Röber RA, Weber K, Osborn M (1989) Differential timing of nuclear lamin A/C expression in the various organs of the mouse embryo and the young animal: a developmental study. Development 105:365–378

    PubMed  Google Scholar 

  • Savage DB, Soos MA, Powlson A, O’Rahilly S, McFarlane I, Halsall DJ et al (2004) Familial partial lipodystrophy associated with compound heterozygosity for novel mutations in the LMNA gene. Diabetologia 47:753–756

    Article  PubMed  CAS  Google Scholar 

  • Scaffidi P, Misteli T (2006) Lamin A-dependent nuclear defects in human aging. Science 312:1059–1063

    Article  PubMed  CAS  Google Scholar 

  • Scaffidi P, Misteli T (2008) Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nat Cell Biol 10:452–459

    Article  PubMed  CAS  Google Scholar 

  • Schirmer EC, Florens L, Guan T, Yates JR 3rd, Gerace L (2003) Nuclear membrane proteins with potential disease links found by subtractive proteomics. Science 301:1380–1382

    Article  PubMed  CAS  Google Scholar 

  • Schuster J, Sundblom J, Thuresson AC, Hassin-Baer S, Klopstock T, Dichgans M et al (2011) Genomic duplications mediate overexpression of lamin B1 in adult-onset autosomal dominant leukodystrophy (ADLD) with autonomic symptoms. Neurogenetics 12:65–72

    Article  PubMed  CAS  Google Scholar 

  • Senior A, Gerace L (1988) Integral membrane proteins specific to the inner nuclear membrane and associated with the nuclear lamina. J Cell Biol 107:2029–2036

    Article  PubMed  CAS  Google Scholar 

  • Shackleton S, Lloyd DJ, Jackson SN, Evans R, Niermeijer MF, Singh BM et al (2000) LMNA, encoding lamin A/C, is mutated in partial lipodystrophy. Nat Genet 24:153–156

    Article  PubMed  CAS  Google Scholar 

  • Shumaker DK, Lee KK, Tanhehco YC, Craigie R, Wilson KL (2001) LAP2 binds to BAF–DNA complexes: requirement for the LEM domain and modulation by variable regions. EMBO J 20:1754–1764

    Article  PubMed  CAS  Google Scholar 

  • Silve S, Dupuy PH, Ferrara P, Loison G (1998) Human lamin B receptor exhibits sterol C14-reductase activity in Saccharomyces cerevisiae. Biochim Biophys Acta 1392:233–244

    PubMed  CAS  Google Scholar 

  • Sinensky M, Fantle K, Trujillo M, McLain T, Kupfer A, Dalton M (1994) The processing pathway of prelamin. A J Cell Sci 107:61–67

    CAS  Google Scholar 

  • Speckman RA, Garg A, Du F, Bennett L, Veile R, Arioglu E et al (2000) Mutational and haplotype analyses of families with familial partial lipodystrophy (Dunnigan variety) reveal recurrent missense mutations in the globular C-terminal domain of lamin A/C. Am J Hum Genet 66:1192–1198

    Article  PubMed  CAS  Google Scholar 

  • Stewart C, Burke B (1987) Teratocarcinoma stem cells and early mouse embryos contain only a single major lamin polypeptide closely resembling lamin B. Cell 51:383–392

    Article  PubMed  CAS  Google Scholar 

  • Subramanyam L, Simha V, Garg A (2010) Overlapping syndrome with familial partial lipodystrophy, Dunnigan variety and cardiomyopathy due to amino-terminal heterozygous missense lamin A/C mutations. Clin Genet 78:66–73

    Article  PubMed  CAS  Google Scholar 

  • Sullivan T, Escalante-Alcalde D, Bhatt H, Anver M, Bhat N, Nagashima K et al (1999) Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J Cell Biol 147:913–920

    Article  PubMed  CAS  Google Scholar 

  • Taimen P, Pfleghaar K, Shimi T, Möller D, Ben-Harush K, Erdos MR (2009) A progeria mutation reveals functions for lamin A in nuclear assembly, architecture, and chromosome organization. Proc Natl Acad Sci USA 106:20788–20793

    Article  PubMed  CAS  Google Scholar 

  • Tanabe LM, Kim CE, Alagem N, Dauer WT (2009) Primary dystonia: molecules and mechanisms. Nat Rev Neurol 5:598–609

    Article  PubMed  CAS  Google Scholar 

  • Taylor MG, Slavov D, Gajewski A, Vlcek S, Ku L, Fain PR et al (2005) Thymopoietin (lamina-associated polypeptide 2) gene mutation associated with dilated cardiomyopathy. Hum Mutat 26:566–574

    Article  PubMed  CAS  Google Scholar 

  • Tazir M, Azzedine H, Assami S, Sindou P, Nouioua S, Zemmouri R et al (2004) Phenotypic variability in autosomal recessive axonal Charcot–Marie–Tooth disease due to the R298C mutation in lamin A/C. Brain 127:154–163

    Article  PubMed  CAS  Google Scholar 

  • Tilgner K, Wojciechowicz K, Jahoda C, Hutchison C, Markiewicz E (2009) Dynamic complexes of A-type lamins and emerin influence adipogenic capacity of the cell via nucleocytoplasmic distribution of beta-catenin. J Cell Sci 122:401–413

    Article  PubMed  CAS  Google Scholar 

  • Vantyghem MC, Pigny P, Maurage CA, Rouaix-Emery N, Stojkovic T, Cuisset JM et al (2004) Patients with familial partial lipodystrophy of the Dunnigan type due to a LMNA R482W mutation show muscular and cardiac abnormalities. J Clin Endocrinol Metab 89:5337–5546

    Article  PubMed  CAS  Google Scholar 

  • Varela I, Pereira S, Ugalde AP, Navarro CL, Suárez MF, Cau P et al (2008) Combined treatment with statins and aminobisphosphonates extends longevity in a mouse model of human premature aging. Nat Med 14:767–772

    Article  PubMed  CAS  Google Scholar 

  • Vaughan A, Alvarez-Reyes M, Bridger JM, Broers JL, Ramaekers FC, Wehnert M et al (2001) Both emerin and lamin C depend on lamin A for localization at the nuclear envelope. J Cell Sci 114:2577–2590

    PubMed  CAS  Google Scholar 

  • Vergnes L, Péterfy M, Bergo MO, Young SG, Reue K (2004) Lamin B1 is required for mouse development and nuclear integrity. Proc Natl Acad Sci USA 101:10428–10433

    Article  PubMed  CAS  Google Scholar 

  • Verstraeten VL, Broers JL, van Steensel MA, Zinn-Justin S, Ramaekers FC, Steijlen PM et al (2006) Compound heterozygosity for mutations in LMNA causes a progeria syndrome without prelamin A accumulation. Hum Mol Genet 15:2509–2522

    Article  PubMed  CAS  Google Scholar 

  • Verstraeten VL, Caputo S, van Steensel MA, Duband-Goulet I, Zinn-Justin S, Kamps M et al (2009) The R439C mutation in LMNA causes lamin oligomerization and susceptibility to oxidative stress. J Cell Mol Med 13:959–971

    Article  PubMed  CAS  Google Scholar 

  • Walter MC, Witt TN, Weigel BS, Reilich P, Richard P, Pongratz D et al (2005) Deletion of the LMNA initiator codon leading to a neurogenic variant of autosomal dominant Emery–Dreifuss muscular dystrophy. Neuromuscul Disord 15:40–44

    Article  PubMed  Google Scholar 

  • Wang Y, Herron AJ, Worman HJ (2006) Pathology and nuclear abnormalities in hearts of transgenic mice expressing M371K lamin A encoded by an LMNA mutation causing Emery–Dreifuss muscular dystrophy. Hum Mol Genet 15:2479–2489

    Article  PubMed  CAS  Google Scholar 

  • Wassif CA, Brownson KE, Sterner AL, Forlino A, Zerfas PM, Wilson WK et al (2007) HEM dysplasia and ichthyosis are likely laminopathies and not due to 3beta-hydroxysterol Delta14-reductase deficiency. Hum Mol Genet 16:1176–1187

    Article  PubMed  CAS  Google Scholar 

  • Waterham HR, Koster J, Mooyer P, van Noort G, Kelley RI, Wilcox WR et al (2003) Autosomal recessive HEM/Greenberg skeletal dysplasia is caused by 3-beta-hydroxysterol delta 14-reductase deficiency due to mutations in the lamin B receptor gene. Am J Hum Genet 72:1013–1017

    Article  PubMed  CAS  Google Scholar 

  • Wilson KL, Foisner R (2010) Lamin-binding proteins. Cold Spring Harb Perspect Biol 2:a000554

    Article  PubMed  CAS  Google Scholar 

  • Wojtanik KM, Edgemon K, Viswanadha S, Lindsey B, Haluzik M, Chen W et al (2009) The role of LMNA in adipose: a novel mouse model of lipodystrophy based on the Dunnigan-type familial partial lipodystrophy mutation. J Lipid Res 50:1068–1079

    Article  PubMed  CAS  Google Scholar 

  • Worman HJ, Lazaridis I, Georgatos SD (1988a) Nuclear lamina heterogeneity in mammalian cells. Differential expression of the major lamins and variations in lamin B phosphorylation. J Biol Chem 263:12135–12141

    PubMed  CAS  Google Scholar 

  • Worman HJ, Yuan J, Blobel G, Georgatos SD (1988b) A lamin B receptor in the nuclear envelope. Proc Natl Acad Sci USA 85:8531–8534

    Article  PubMed  CAS  Google Scholar 

  • Worman HJ, Evans CD, Blobel G (1990) The lamin B receptor of the nuclear envelope inner membrane: a polytopic protein with eight potential transmembrane domains. J Cell Biol 111:1535–1542

    Article  PubMed  CAS  Google Scholar 

  • Wu W, Shan J, Bonne G, Worman HJ, Muchir A (2010) Pharmacological inhibition of c-Jun N-terminal kinase signaling prevents cardiomyopathy caused by mutation in LMNA gene. Biochim Biophys Acta 1802:632–638

    PubMed  CAS  Google Scholar 

  • Wu W, Muchir A, Shan J, Bonne G, Worman HJ (2011) Mitogen-activated protein kinase inhibitors improve heart function and prevent fibrosis in cardiomyopathy caused by mutation in lamin A/C gene. Circulation 123:53–61

    Article  PubMed  CAS  Google Scholar 

  • Wydner KL, McNeil JA, Lin F, Worman HJ, Lawrence JB (1996) Chromosomal assignment of human nuclear envelope protein genes LMNA, LMNB1, and LBR by fluorescence in situ hybridization. Genomics 32:474–478

    Article  PubMed  CAS  Google Scholar 

  • Yang SH, Meta M, Qiao X, Frost D, Bauch J, Coffinier CA et al (2006) A farnesyltransferase inhibitor improves disease phenotypes in mice with a Hutchinson–Gilford progeria syndrome mutation. J Clin Invest 116:2115–2121

    Article  PubMed  CAS  Google Scholar 

  • Yang SH, Andres DA, Spielmann HP, Young SG, Fong LG (2008a) Progerin elicits disease phenotypes of progeria in mice whether or not it is farnesylated. J Clin Invest 118:3291–3300

    Article  PubMed  CAS  Google Scholar 

  • Yang SH, Qiao X, Fong LG, Young SG (2008b) Treatment with a farnesyltransferase inhibitor improves survival in mice with a Hutchinson–Gilford progeria syndrome mutation. Biochim Biophys Acta 1781:36–39

    PubMed  CAS  Google Scholar 

  • Yang SH, Chang SY, Ren S, Wang Y, Andres DA, Spielmann HP et al (2011) Absence of progeria-like disease phenotypes in knock-in mice expressing a non-farnesylated version of progerin. Hum Mol Genet 20:436–444

    Article  PubMed  CAS  Google Scholar 

  • Ye Q, Worman HJ (1994) Primary structure analysis and lamin B and DNA binding of human LBR, an integral protein of the nuclear envelope inner membrane. J Biol Chem 269:11306–11311

    PubMed  CAS  Google Scholar 

  • Ye Q, Worman HJ (1996) Interaction between an integral protein of the nuclear envelope inner membrane and human chromodomain proteins homologous to Drosophila HP1. J Biol Chem 271:14653–14656

    Article  PubMed  CAS  Google Scholar 

  • Young SG, Fong LG, Michaelis S (2005) Prelamin A, Zmpste24 misshapen cell nuclei, and progeria—new evidence suggesting that protein farnesylation could be important for disease pathogenesis. J Lipid Res 46:2531–2558

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Bethmann C, Worth NF, Davies JD, Wasner C, Feuer A et al (2007) Nesprin-1 and -2 are involved in the pathogenesis of Emery–Dreifuss muscular dystrophy and are critical for nuclear envelope integrity. Hum Mol Genet 16:2816–2833

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Lian Q, Zhu G, Zhou F, Sui L, Tan C et al (2011) A human iPSC model of Hutchinson–Gilford progeria reveals vascular smooth muscle and mesenchymal stem cell defects. Cell Stem Cell 8:31–45

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard J. Worman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Méndez-López, I., Worman, H.J. Inner nuclear membrane proteins: impact on human disease. Chromosoma 121, 153–167 (2012). https://doi.org/10.1007/s00412-012-0360-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-012-0360-2

Keywords

Navigation