Skip to main content

Advertisement

Log in

Novel components of human mitotic chromosomes identified by proteomic analysis of the chromosome scaffold fraction

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Chromosomal nonhistone proteins have important roles in mitotic chromosome formation and dynamics. In order to identify novel abundant proteins with a potential involvement in these processes, we initiated a proteomic screen of the chromosome scaffold fraction. This screen identified 79 proteins, 30 of which had not previously been described as components of mitotic chromosomes. Furthermore, half of these proteins had no documented function. We analyzed the cell-cycle dependent distribution of three uncharacterized proteins by expressing them as green fluorescent protein (GFP) fusions and showed that they associate with mitotic chromosomes in vivo. One of the proteins, nuclear protein p30, is a novel component of the inner centromere. Over-expression experiments indicated that p30 may have an active role in the formation of centromeric heterochromatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c
Fig. 2a–c
Fig. 3a, b
Fig. 4a–e
Fig. 5a–c

Similar content being viewed by others

References

  • Adolph KW, Cheng SM, Paulson JR, Laemmli UK (1977) Isolation of a protein scaffold from mitotic HeLa cell chromosomes. Proc Natl Acad Sci U S A 11:4937–4941

    Google Scholar 

  • Andersen JS, Lyon CE, Fox AH, Leung AK, Lam YW, Steen H, Mann M, Lamond AI (2002) Directed proteomic analysis of the human nucleolus. Curr Biol 12:1–11

    Article  PubMed  Google Scholar 

  • Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA, Mann M (2003) Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426:570–574

    Article  CAS  PubMed  Google Scholar 

  • Belmont AS, Bruce K (1994) Visualization of G1 chromosomes: A folded, twisted, supercoiled chromonema model of interphase chromatid structure. J Cell Biol 127:287–302

    CAS  PubMed  Google Scholar 

  • Blumenthal AB, Dieden JD, Kapp LN, Sedat JW (1979) Rapid isolation of metaphase chromosomes containing high molecular weight DNA. J Cell Biol 81:255–259

    CAS  PubMed  Google Scholar 

  • Carvalho A, Carmena M, Sambade C, Earnshaw WC, Wheatley SP (2003) Survivin is required for stable checkpoint activation in taxol-treated HeLa cells. J Cell Sci 116:2987–2998

    Article  CAS  PubMed  Google Scholar 

  • Cronshaw JM, Krutchinsky AN, Zhang W, Chait BT, Matunis MJ (2002) Proteomic analysis of the mammalian nuclear pore complex. J Cell Biol 158:915–927

    CAS  PubMed  Google Scholar 

  • Fomproix N, Gebrane-Younes J, Hernandez-Verdun D (1998) Effects of anti-fibrillarin antibodies on building of functional nucleoli at the end of mitosis. J Cell Sci 111:359–372

    CAS  PubMed  Google Scholar 

  • Funabiki H, Murray AW (2000) The Xenopus chromokinesin Xkid is essential for metaphase chromosome alignment and must be degraded to allow anaphase chromosome movement. Cell 102:411–424

    CAS  PubMed  Google Scholar 

  • Gasser SM, Laemmli UK (1987) Improved methods for the isolation of individual and clustered mitotic chromosomes. Exp Cell Res 173:85–98

    CAS  PubMed  Google Scholar 

  • Gassmann R, Carvalho A, Henzing AJ, Ruchaud S, Hudson DF, Honda R, Nigg EA, Gerloff DL, Earnshaw WC (2004) Borealin: a novel chromosomal passenger required for stability of the bipolar mitotic spindle. J Cell Biol 166:179–191

    Article  PubMed  Google Scholar 

  • Hernandez-Verdun D, Gautier T (1994) The chromosome periphery during mitosis. Bioessays 16:179–185

    CAS  PubMed  Google Scholar 

  • Hirano T, Kobayashi R, Hirano M (1997) Condensins, chromosome condensation protein complexes containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein. Cell 89:511–521

    Article  CAS  PubMed  Google Scholar 

  • Howell BJ, McEwen BF, Canman JC, Hoffman DB, Farrar EM, Rieder CL, Salmon ED (2001) Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation. J Cell Biol 155:1159–1172

    CAS  PubMed  Google Scholar 

  • Hudson DF, Vagnarelli P, Gassmann R, Earnshaw WC (2003) Condensin is required for nonhistone protein assembly and structural integrity of vertebrate mitotic chromosomes. Dev Cell 5:323–336

    Article  CAS  PubMed  Google Scholar 

  • Hugle B, Hazan R, Scheer U, Franke WW (1985) Localization of ribosomal protein S1 in the granular component of the interphase nucleolus and its distribution during mitosis. J Cell Biol 100:873–886

    CAS  PubMed  Google Scholar 

  • Jensen ON, Podtelejnikov AV, Mann M (1997) Identification of the components of simple protein mixtures by high-accuracy peptide mass mapping and database searching. Anal Chem 69:4741–4750

    CAS  PubMed  Google Scholar 

  • Laemmli UK, Cheng SM, Adolph KW, Paulson JR, Brown JA, Baumbach WR (1978) Metaphase chromosome structure: the role of nonhistone proteins. Cold Spring Harbor Symp Quant Biol 423:351–360

    Google Scholar 

  • Lee SW, Cho BH, Park SG, Kim S (2004) Aminoacyl-tRNA synthetase complexes: beyond translation. J Cell Sci 117:3725–3734

    CAS  PubMed  Google Scholar 

  • Lewis CD, Laemmli UK (1982) Higher order metaphase chromosome structure: evidence for metalloprotein interactions. Cell 29:171–181

    CAS  PubMed  Google Scholar 

  • Li D, Roberts R (2001) WD-repeat proteins: structure characteristics, biological function, and their involvement in human diseases. Cell Mol Life Sci 58:2085–2097

    CAS  PubMed  Google Scholar 

  • Lund E, Dahlberg JE (1998) Proofreading and aminoacylation of tRNAs before export from the nucleus. Science 282:2082–2085

    CAS  PubMed  Google Scholar 

  • Morrison C, Henzing AJ, Jensen ON, Osheroff N, Dodson H, Kandels-Lewis SE, Adams RR, Earnshaw WC (2002) Proteomic analysis of human metaphase chromosomes reveals topoisomerase II alpha as an Aurora B substrate. Nucleic Acids Res 30:5318–5327

    Article  CAS  PubMed  Google Scholar 

  • Nathanson L, Deutscher MP (2000) Active aminoacyl-tRNA synthetases are present in nuclei as a high molecular weight multienzyme complex. J Biol Chem 275:31559–31562

    CAS  PubMed  Google Scholar 

  • Neubauer G, King A, Rappsilber J, Calvio C, Watson M, Ajuh P, Sleeman J, Lamond A, Mann M (1998) Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex. Nat Genet 20:46–50

    Article  CAS  PubMed  Google Scholar 

  • Saitoh N, Goldberg I, Wood E, Earnshaw WC (1994) ScII: an abundant chromosome scaffold protein is a member of a family of putative ATPases with an unusual predicted tertiary structure. J Cell Biol 127:303–318

    CAS  PubMed  Google Scholar 

  • Saitoh N, Spahr CS, Patterson SD, Bubulya P, Neuwald AF, Spector DL (2004) Proteomic analysis of interchromatin granule clusters. Mol Biol Cell 15:3876–3890

    CAS  PubMed  Google Scholar 

  • Salic A, Waters JC, Mitchison TJ (2004) Vertebrate shugoshin links sister centromere cohesion and kinetochore microtubule stability in mitosis. Cell 118:567–578

    CAS  PubMed  Google Scholar 

  • Sampath SC, Ohi R, Leismann O, Salic A, Pozniakovski A, Funabiki H (2004) The chromosomal passenger complex is required for chromatin-induced microtubule stabilization and spindle assembly. Cell 118:187–202

    CAS  PubMed  Google Scholar 

  • Scherl A, Coute Y, Deon C, Calle A, Kindbeiter K, Sanchez JC, Greco A, Hochstrasser D, Diaz JJ (2002) Functional proteomic analysis of human nucleolus. Mol Biol Cell 13:4100–4109

    CAS  PubMed  Google Scholar 

  • Schirmer EC, Florens L, Guan T, Yates JR, 3rd, Gerace L (2003) Nuclear membrane proteins with potential disease links found by subtractive proteomics. Science 301:1380–1382

    CAS  PubMed  Google Scholar 

  • Shevchenko A, Wilm M, Vorm O, Jensen ON, Podtelejnikov AV, Neubauer G, Mortensen P, Mann M (1996) A strategy for identifying gel-separated proteins in sequence databases by MS alone. Biochem Soc Trans 24:893–896

    CAS  PubMed  Google Scholar 

  • Smith TF, Gaitatzes C, Saxena K, Neer EJ (1999) The WD repeat: a common architecture for diverse functions. Trends Biochem Sci 24:181–185

    CAS  PubMed  Google Scholar 

  • Wray W, Stubblefield E (1970) A new method for the rapid isolation of chromosomes, mitotic apparatus, or nuclei from mammalian fibroblasts at near neutral pH. Exp Cell Res 59:469–478

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

R. Gassmann is funded by a studentship from the Darwin Trust of Edinburgh. Work in the W.C. Earnshaw laboratory is funded by the Wellcome Trust, of which W.C. Earnshaw is a Principal Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William C. Earnshaw.

Additional information

Communicated by E.A. Nigg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gassmann, R., Henzing, A.J. & Earnshaw, W.C. Novel components of human mitotic chromosomes identified by proteomic analysis of the chromosome scaffold fraction. Chromosoma 113, 385–397 (2005). https://doi.org/10.1007/s00412-004-0326-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-004-0326-0

Keywords

Navigation