Skip to main content
Log in

The Drosophila meiotic kleisin C(2)M functions before the meiotic divisions

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Stepwise and regionally controlled resolution of sister chromatid cohesion is thought to be crucial for faithful chromosome segregation during meiotic divisions. In yeast, the meiosis-specific α-kleisin subunit of the cohesin complex, Rec8, is protected from cleavage by separase but only during meiosis I and specifically within the pericentromeric region. While the Drosophila genome does not contain an obvious Rec8 orthologue, as other animal and plant genomes, it includes c(2)M, which encodes a distant α-kleisin family member involved in female meiosis. C(2)M associates in vivo with the Smc3 cohesin subunit, as previously shown for yeast Rec8. In contrast to Rec8, however, C(2)M accumulates predominantly after the pre-meiotic S-phase. Moreover, after association with the synaptonemal complex, it disappears again and cannot be detected on meiotic chromosomes by metaphase I. C(2)M cleavage fragments are not observed during completion of the meiotic divisions, and mutations within putative separase cleavage sites do not interfere with meiotic chromosome segregation. Therefore, C(2)M appears to function within the synaptonemal complex during prophase I but possibly not thereafter. This suggests that C(2)M may not confer sister chromatid cohesion needed for meiosis I and II chromosome segregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1a,b
Fig. 2
Fig. 3a–r
Fig. 4
Fig. 5a–c

Similar content being viewed by others

References

  • Anderson DE, Losada A, Erickson HP, Hirano T (2002) Condensin and cohesin display different arm conformations with characteristic hinge angles. J Cell Biol 156:419–424

    Article  CAS  PubMed  Google Scholar 

  • Arumugam P, Gruber S, Tanaka K, Haering CH, Mechtler K, Nasmyth K (2003) ATP hydrolysis is required for cohesin’s association with chromosomes. Curr Biol 13:1941–1953

    Article  CAS  PubMed  Google Scholar 

  • Bickel SE, Orr-Weaver TL, Balicky EM (2002) The sister-chromatid cohesion protein ORD is required for chiasma maintenance in Drosophila oocytes. Curr Biol 12:925–929

    Article  CAS  PubMed  Google Scholar 

  • Brown NH, Kafatos FC (1988) Functional cDNA libraries from Drosophila embryos. J Mol Biol 203:425–437

    CAS  PubMed  Google Scholar 

  • Buonomo SB, Clyne RK, Fuchs J, Loidl J, Uhlmann F, Nasmyth K (2000) Disjunction of homologous chromosomes in meiosis I depends on proteolytic cleavage of the meiotic cohesin Rec8 by separin. Cell 103:387–398

    Article  CAS  PubMed  Google Scholar 

  • Cai X, Dong F, Edelmann RE, Makaroff CA (2003) The Arabidopsis SYN1 cohesin protein is required for sister chromatid arm cohesion and homologous chromosome pairing. J Cell Sci 116:2999–3007

    Article  CAS  PubMed  Google Scholar 

  • Calvi BR, Lilly MA (2004) Fluorescent BrdU labeling and nuclear flow sorting of the Drosophila ovary. Methods Mol Biol 247:203–213

    CAS  PubMed  Google Scholar 

  • Ciosk R, Zachariae W, Michaelis C, Shevchenko A, Mann M, Nasmyth K (1998) An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast. Cell 93:1067–1076

    Article  CAS  PubMed  Google Scholar 

  • Edgar BA, Sprenger F, Duronio RJ, Leopold P, O’Farrell PH (1994) Distinct molecular mechanisms regulate cell cycle timing at successive stages of Drosophila embryogenesis. Genes Dev 8:440–452

    CAS  PubMed  Google Scholar 

  • Eijpe M, Offenberg H, Jessberger R, Revenkova E, Heyting C (2003) Meiotic cohesin REC8 marks the axial elements of rat synaptonemal complexes before cohesins SMC1beta and SMC3. J Cell Biol 160:657–670

    Article  CAS  PubMed  Google Scholar 

  • Funabiki H, Yamano H, Kumada K, Nagao K, Hunt T, Yanagida M (1996) Cut2 proteolysis required for sister-chromatid separation in fission yeast. Nature 381:438–441

    Article  CAS  PubMed  Google Scholar 

  • Golic MM, Rong YS, Petersen RB, Lindquist SL, Golic KG (1997) FLP-mediated DNA mobilization to specific target sites in Drosophila chromosomes. Nucleic Acids Res 25:3665–3671

    Article  CAS  PubMed  Google Scholar 

  • Gruber S, Haering CH, Nasmyth K (2003) Chromosomal cohesin forms a ring. Cell 112:765–777

    Article  CAS  PubMed  Google Scholar 

  • Haering CH, Lowe J, Hochwagen A, Nasmyth K (2002) Molecular architecture of SMC proteins and the yeast cohesin complex. Mol Cell 9:773–788

    Article  CAS  PubMed  Google Scholar 

  • Herzig A, Lehner CF, Heidmann S (2002) Proteolytic cleavage of the THR subunit during anaphase limits Drosophila separase function. Genes Dev 16:2443–2454

    Article  CAS  PubMed  Google Scholar 

  • Hong A, Lee-Kong S, Iida T, Sugimura I, Lilly MA (2003) The p27cip/kip ortholog dacapo maintains the Drosophila oocyte in prophase of meiosis I. Development 130:1235–1242

    Article  CAS  PubMed  Google Scholar 

  • Jacobs HW, Knoblich JA, Lehner CF (1998) Drosophila Cyclin B3 is required for female fertility and is dispensable for mitosis like Cyclin B. Genes Dev 12:3741–3751

    CAS  PubMed  Google Scholar 

  • Jacobs HW, Richter DO, Venkatesh TR, Lehner CF (2002) Completion of mitosis requires neither fzr/rap nor fzr2, a male germline-specific Drosophila Cdh1 homolog. Curr Biol 12:1435–1441

    Article  CAS  PubMed  Google Scholar 

  • Jäger H, Herzig A, Lehner CF, Heidmann S (2001) Drosophila separase is required for sister chromatid separation and binds to PIM and THR. Genes Dev 15:2572–2584

    Article  PubMed  Google Scholar 

  • Kerrebrock AW, Miyazaki WY, Birnby D, Orr-Weaver TL (1992) The Drosophila mei-S322 gene promotes sister chromatid cohesion in meiosis following kinetochore differentiation. Genetics 130:827–841

    CAS  PubMed  Google Scholar 

  • Kerrebrock AW, Moore DP, Wu JS, Orr-Weaver TL (1995) mei-S322, a Drosophila protein required for sister-chromatid cohesion, can localize to meiotic centromere regions. Cell 83:247–256

    Article  CAS  PubMed  Google Scholar 

  • Kitajima TS, Miyazaki Y, Yamamoto M, Watanabe Y (2003a) Rec8 cleavage by separase is required for meiotic nuclear divisions in fission yeast. EMBO J 22:5643–5653

    Article  CAS  PubMed  Google Scholar 

  • Kitajima TS, Yokobayashi S, Yamamoto M, Watanabe Y (2003b) Distinct cohesin complexes organize meiotic chromosome domains. Science 300:1152–1155

    Article  CAS  PubMed  Google Scholar 

  • Kitajima TS, Kawashima SA, Watanabe Y (2004) The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Nature 427:510–517

    Article  CAS  PubMed  Google Scholar 

  • Klein F, Mahr P, Galova M, Buonomo SB, Michaelis C, Nairz K, Nasmyth K (1999) A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis. Cell 98:91–103

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Iwai T, Yokota T, Yamashita M (2003) Temporally and spatially selective loss of Rec8 protein from meiotic chromosomes during mammalian meiosis. J Cell Sci 116:2781–2790

    Article  CAS  PubMed  Google Scholar 

  • Leismann O, Lehner CF (2003) Drosophila securin destruction involves a D-box and a KEN-box and promotes anaphase in parallel with Cyclin A degradation. J Cell Sci 116:2453–2460

    Article  CAS  PubMed  Google Scholar 

  • Leismann O, Herzig A, Heidmann S, Lehner CF (2000) Degradation of Drosophila PIM regulates sister chromatid separation during mitosis. Genes Dev 14:2192–2205

    Article  CAS  PubMed  Google Scholar 

  • Losada A, Hirano M, Hirano T (2002) Cohesin release is required for sister chromatid resolution, but not for condensin-mediated compaction, at the onset of mitosis. Genes Dev 16:3004–3016

    Article  CAS  PubMed  Google Scholar 

  • Manheim EA, McKim KS (2003) The Synaptonemal complex component C(2)M regulates meiotic crossing over in Drosophila. Curr Biol 13:276–285

    Article  CAS  PubMed  Google Scholar 

  • Marston AL, Tham WH, Shah H, Amon A (2004) A genome-wide screen identifies genes required for centromeric cohesion. Science 303:1367–1370

    Article  CAS  PubMed  Google Scholar 

  • Meyer CA, Kramer I, Dittrich R, Marzodko S, Emmerich J, Lehner CF (2002) Drosophila p27Dacapo expression during embryogenesis is controlled by a complex regulatory region independent of cell cycle progression. Development 129:319–328

    CAS  PubMed  Google Scholar 

  • Miyazaki WY, Orr-Weaver TL (1992) Sister-chromatid misbehavior in Drosophila ord mutants. Genetics 132:1047–1061

    CAS  PubMed  Google Scholar 

  • Moore DP, Page AW, Tang TT, Kerrebrock AW, Orr-Weaver TL (1998) The cohesion protein MEI-S332 localizes to condensed meiotic and mitotic centromeres until sister chromatids separate. J Cell Biol 140:1003–1012

    Article  CAS  PubMed  Google Scholar 

  • Page SL, Hawley RS (2001) c(3)G encodes a Drosophila synaptonemal complex protein. Genes Dev 15:3130–3143

    Article  CAS  PubMed  Google Scholar 

  • Page AW, Orr-Weaver TL (1997) Activation of the meiotic divisions in Drosophila oocytes. Dev Biol 183:195–207

    Article  CAS  PubMed  Google Scholar 

  • Parisi S, McKay MJ, Molnar M, Thompson MA, van der Spek PJ, van Drunen-Schoenmaker E, Kanaar R, Lehmann E, Hoeijmakers JH, Kohli J (1999) Rec8p, a meiotic recombination and sister chromatid cohesion phosphoprotein of the Rad21p family conserved from fission yeast to humans. Mol Cell Biol 19:3515–3528

    CAS  PubMed  Google Scholar 

  • Parra MT, Viera A, Gomez R, Page J, Benavente R, Santos JL, Rufas JS, Suja JA (2004) Involvement of the cohesin Rad21 and SCP3 in monopolar attachment of sister kinetochores during mouse meiosis I. J Cell Sci 117:1221–1234

    Article  CAS  PubMed  Google Scholar 

  • Pasierbek P, Jantsch M, Melcher M, Schleiffer A, Schweizer D, Loidl J (2001) A Caenorhabditis elegans cohesion protein with functions in meiotic chromosome pairing and disjunction. Genes Dev 15:1349–1360

    Article  CAS  PubMed  Google Scholar 

  • Petronczki M, Siomos MF, Nasmyth K (2003) Un menage a quatre: the molecular biology of chromosome segregation in meiosis. Cell 112:423–440

    Article  CAS  PubMed  Google Scholar 

  • Rabitsch KP, Gregan J, Schleiffer A, Javerzat JP, Eisenhaber F, Nasmyth K (2004) Two fission yeast homologs of Drosophila mei-S332 are required for chromosome segregation during meiosis I and II. Curr Biol 14:287–301

    Article  CAS  PubMed  Google Scholar 

  • Schleiffer A, Kaitna S, Maurer-Stroh S, Glotzer M, Nasmyth K, Eisenhaber F (2003) Kleisins: a superfamily of bacterial and eukaryotic SMC protein partners. Mol Cell 11:571–575

    Article  CAS  PubMed  Google Scholar 

  • Spradling AC (1993) Developmental genetics of oogenesis. In: Bate M, Martinez Arias A (eds) The development of Drosophila melanogaster, vol 1. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 1–70

    Google Scholar 

  • Sullivan M, Hornig NC, Porstmann T, Uhlmann F (2004) Studies on substrate recognition by the budding yeast separase. J Biol Chem 279:1191–1196

    Article  CAS  PubMed  Google Scholar 

  • Sumara I, Vorlaufer E, Stukenberg PT, Kelm O, Redemann N, Nigg EA, Peters JM (2002) The dissociation of cohesin from chromosomes in prophase is regulated by Polo-like kinase. Mol Cell 9:515–525

    Article  CAS  PubMed  Google Scholar 

  • Theurkauf WE (1994) Immunofluorescence analysis of the cytoskeleton during oogenesis and early embryogenesis. Methods Cell Biol 44:489–505

    CAS  PubMed  Google Scholar 

  • Uhlmann F, Nasmyth K (1998) Cohesion between sister chromatids must be established during DNA replication. Curr Biol 8:1095–1101

    Article  CAS  PubMed  Google Scholar 

  • Uhlmann F, Wernic D, Poupart MA, Koonin EV, Nasmyth K (2000) Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103:375–386

    Article  CAS  PubMed  Google Scholar 

  • Waizenegger IC, Hauf S, Meinke A, Peters JM (2000) Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell 103:399–410

    Article  CAS  PubMed  Google Scholar 

  • Waizenegger I, Gimenez-Abian JF, Wernic D, Peters JM (2002) Regulation of human separase by securin binding and autocleavage. Curr Biol 12:1368–1378

    Article  CAS  PubMed  Google Scholar 

  • Warren WD, Steffensen S, Lin E, Coelho P, Loupart M, Cobbe N, Lee JY, McKay MJ, Orr-Weaver T, Heck MM, Sunkel CE (2000) The Drosophila RAD21 cohesin persists at the centromere region in mitosis. Curr Biol 10:1463–1466

    Article  CAS  PubMed  Google Scholar 

  • Watanabe Y, Nurse P (1999) Cohesin Rec8 is required for reductional chromosome segregation at meiosis. Nature 400:461–464

    Article  CAS  PubMed  Google Scholar 

  • Watanabe Y, Yokobayashi S, Yamamoto M, Nurse P (2001) Pre-meiotic S phase is linked to reductional chromosome segregation and recombination. Nature 409:359–363

    Article  CAS  PubMed  Google Scholar 

  • Weitzer S, Lehane C, Uhlmann F (2003) A model for ATP hydrolysis-dependent binding of cohesin to DNA. Curr Biol 13:1930–1940

    Article  CAS  PubMed  Google Scholar 

  • Zou H, McGarry TJ, Bernal T, Kirschner MW (1999) Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. Science 285:418–422

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mary Lilly for providing us with the antibodies against C(3)G and technical hints. The work was supported by grants from the Deutsche Forschungsgemeinschaft (DFG Le 987/3-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian F. Lehner.

Additional information

Communicated by E.A. Nigg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heidmann, D., Horn, S., Heidmann, S. et al. The Drosophila meiotic kleisin C(2)M functions before the meiotic divisions. Chromosoma 113, 177–187 (2004). https://doi.org/10.1007/s00412-004-0305-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-004-0305-5

Keywords

Navigation