Skip to main content
Log in

Differential effects of genes of the Rb1 signalling pathway on osteosarcoma incidence and latency in alpha-particle irradiated mice

  • Original Paper
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

An Erratum to this article was published on 05 December 2010

Abstract

Osteosarcoma is the most frequent secondary malignancy following radiotherapy of patients with bilateral retinoblastoma. This suggests that the Rb1 tumour suppressor gene might confer genetic susceptibility towards radiation-induced osteosarcoma. To define the contribution of the Rb1 pathway in the multistep process of radiation carcinogenesis, we evaluated somatic allelic changes affecting the Rb1 gene itself as well as its upstream regulator p16 in murine osteosarcoma induced by 227Th incorporation. To distinguish between the contribution of germline predisposition and the effect of a 2-hit allelic loss, two mouse models harbouring heterozygote germline Rb1 and p16 defects were tested for the incidence and latency of osteosarcoma following irradiation. We could show that all tumours arising in BALB/c × CBA/CA hybrid mice (wild-type for Rb1 and for p16) carried a somatic allelic loss of either the Rb1 gene (76.5%) or the p16 gene (59%). In none of the tumours, we found concordant retention of heterozygosity at both loci. Heterozygote knock-out mice for Rb1 exhibit a significant increase in the incidence of osteosarcoma following 227Th incorporation (22/24 in Rb1+/− vs. 2/18 in Rb1+/+, p = 4 × 10−5), without affecting tumour latency. In contrast, heterozygote knock-out mice for p16 had no significant change in tumour incidence, but a pronounced reduction of latency (LT50% = 355 days in p16+/− vs. 445 days in p16+/+, p = 8 × 10−3). These data suggest that Rb1 germline defects influence early steps of radiation osteosarcomagenesis, whereas alterations in p16 mainly affect later stages of tumour promotion and growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Broeks A, Braaf LM, Huseinovic A, Nooijen A, Urbanus J, Hogervorst FB, Schmidt MK, Klijn JG, Russell NS, Van Leeuwen FE, Van ‘t Veer LJ (2007) Identification of women with an increased risk of developing radiation-induced breast cancer: a case only study. Breast Cancer Res 9(2):R26

    Article  Google Scholar 

  • Chang BL, Zheng SL, Isaacs SD, Wiley KE, Turner A, Li G, Walsh PC, Meyers DA, Isaacs WB, Xu J (2004) A polymorphism in the CDKN1B gene is associated with increased risk of hereditary prostate cancer. Cancer Res 64(6):1997–1999

    Article  Google Scholar 

  • Dacquin R, Starbuck M, Schinke T, Karsenty G (2002) Mouse alpha1(I)-collagen promoter is the best known promoter to drive efficient Cre recombinase expression in osteoblast. Dev Dyn 224(2):245–251. doi:10.1002/dvdy.10100

    Article  Google Scholar 

  • Dietrich WF, Miller JC, Steen RG, Merchant M, Damron D, Nahf R, Gross A, Joyce DC, Wessel M, Dredge RD et al (1994) A genetic map of the mouse with 4,006 simple sequence length polymorphisms. Nat Genet 7 (2 Spec No):220–245

    Google Scholar 

  • Fearon ER (1997) Human cancer syndromes: clues to the origin and nature of cancer. Science 278(5340):1043–1050

    Article  ADS  Google Scholar 

  • Fry SA (1998) Studies of U.S. radium dial workers: an epidemiological classic. Radiat Res 150(5 Suppl):S21–S29

    Article  Google Scholar 

  • Giacinti C, Giordano A (2006) RB and cell cycle progression. Oncogene 25(38):5220–5227

    Article  Google Scholar 

  • Harland M, Holland EA, Ghiorzo P, Mantelli M, Bianchi-Scarra G, Goldstein AM, Tucker MA, Ponder BA, Mann GJ, Bishop DT, Newton Bishop J (2000) Mutation screening of the CDKN2A promoter in melanoma families. Genes Chromosomes Cancer 28(1):45–57

    Article  Google Scholar 

  • Huvos AG, Woodard HQ (1988) Postradiation sarcomas of bone. Health Phys 55(4):631–636

    Article  Google Scholar 

  • Huvos AG, Woodard HQ, Cahan WG, Higinbotham NL, Stewart FW, Butler A, Bretsky SS (1985) Postradiation osteogenic sarcoma of bone and soft tissues. A clinicopathologic study of 66 patients. Cancer 55(6):1244–1255

    Article  Google Scholar 

  • Kamb A, Gruis NA, Weaver-Feldhaus J, Liu Q, Harshman K, Tavtigian SV, Stockert E, Day RS 3rd, Johnson BE, Skolnick MH (1994) A cell cycle regulator potentially involved in genesis of many tumor types. Science 264(5157):436–440

    Article  ADS  Google Scholar 

  • Knudson AG Jr (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A 68(4):820–823

    Article  ADS  Google Scholar 

  • Lindor NM, Greene MH (1998) The concise handbook of family cancer syndromes. Mayo Familial Cancer Program. J Natl Cancer Inst 90(14):1039–1071

    Article  Google Scholar 

  • Little M, Wainwright B (1995) Methylation and p16: suppressing the suppressor. Nat Med 1(7):633–634

    Article  Google Scholar 

  • Lukas J, Parry D, Aagaard L, Mann DJ, Bartkova J, Strauss M, Peters G, Bartek J (1995) Retinoblastoma-protein-dependent cell-cycle inhibition by the tumour suppressor p16. Nature 375(6531):503–506

    Article  ADS  Google Scholar 

  • Manning AL, Longworth MS, Dyson NJ (2010) Loss of pRB causes centromere dysfunction and chromosomal instability. Genes Dev 24(13):1364–1376

    Article  Google Scholar 

  • Marino S, Vooijs M, van Der Gulden H, Jonkers J, Berns A (2000) Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev 14(8):994–1004

    Google Scholar 

  • Mark RJ, Poen J, Tran LM, Fu YS, Selch MT, Parker RG (1994) Postirradiation sarcomas. A single-institution study and review of the literature. Cancer 73(10):2653–2662

    Article  Google Scholar 

  • Meadows AT, Strong LC, Li FP, D’Angio GJ, Schweisguth O, Freeman AI, Jenkin RD, Morris-Jones P, Nesbit ME (1980) Bone sarcoma as a second malignant neoplasm in children: influence of radiation and genetic predisposition for the Late Effects Study Group. Cancer 46(12):2603–2606

    Article  Google Scholar 

  • Merlo A, Herman JG, Mao L, Lee DJ, Gabrielson E, Burger PC, Baylin SB, Sidransky D (1995) 5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med 1(7):686–692

    Article  Google Scholar 

  • Pellegata NS, Quintanilla-Martinez L, Siggelkow H, Samson E, Bink K, Hofler H, Fend F, Graw J, Atkinson MJ (2006) Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. Proc Natl Acad Sci U S A 103(42):15558–15563

    Article  ADS  Google Scholar 

  • Pitcher ME, Davidson TI, Fisher C, Thomas JM (1994) Post irradiation sarcoma of soft tissue and bone. Eur J Surg Oncol 20(1):53–56

    Google Scholar 

  • Ponder BA (1990) Inherited predisposition to cancer. Trends Genet 6(7):213–218

    Article  Google Scholar 

  • Rosemann M, Lintrop M, Favor J, Atkinson MJ (2002) Bone tumorigenesis induced by alpha-particle radiation: mapping of genetic loci influencing predisposition in mice. Radiat Res 157(4):426–434

    Article  Google Scholar 

  • Rosemann M, Kuosaite V, Nathrath M, Strom TM, Quintanilla-Martinez L, Richter T, Imai K, Atkinson MJ (2003) Allelic imbalance at intragenic markers of Tbx18 is a hallmark of murine osteosarcoma. Carcinogenesis 24(3):371–376

    Article  Google Scholar 

  • Rosemann M, Kuosaite V, Kremer M, Favor J, Quintanilla-Martinez L, Atkinson MJ (2006) Multilocus inheritance determines predisposition to alpha-radiation induced bone tumourigenesis in mice. Int J Cancer 118(9):2132–2138

    Article  Google Scholar 

  • Rowland RE, Stehney AF, Lucas HF Jr (1978) Dose-response relationships for female radium dial workers. Radiat Res 76(2):368–383

    Article  Google Scholar 

  • Sharpless NE, Bardeesy N, Lee KH, Carrasco D, Castrillon DH, Aguirre AJ, Wu EA, Horner JW, DePinho RA (2001) Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 413(6851):86–91

    Article  ADS  Google Scholar 

  • Soufir N, Avril MF, Chompret A, Demenais F, Bombled J, Spatz A, Stoppa-Lyonnet D, Benard J, Bressac-de Paillerets B (1998) Prevalence of p16 and CDK4 germline mutations in 48 melanoma-prone families in France. The French Familial Melanoma Study Group. Hum Mol Genet 7(2):209–216

    Article  Google Scholar 

  • Stavrou T, Bromley CM, Nicholson HS, Byrne J, Packer RJ, Goldstein AM, Reaman GH (2001) Prognostic factors and secondary malignancies in childhood medulloblastoma. J Pediatr Hematol Oncol 23(7):431–436

    Article  Google Scholar 

  • Tucker MA, D’Angio GJ, Boice JD Jr, Strong LC, Li FP, Stovall M, Stone BJ, Green DM, Lombardi F, Newton W et al (1987) Bone sarcomas linked to radiotherapy and chemotherapy in children. N Engl J Med 317(10):588–593

    Article  Google Scholar 

  • Wong FL, Boice JD Jr, Abramson DH, Tarone RE, Kleinerman RA, Stovall M, Goldman MB, Seddon JM, Tarbell N, Fraumeni JF Jr, Li FP (1997) Cancer incidence after retinoblastoma. Radiation dose and sarcoma risk. JAMA 278(15):1262–1267

    Article  Google Scholar 

  • Zhu L (2005) Tumour suppressor retinoblastoma protein Rb: a transcriptional regulator. Eur J Cancer 41(16):2415–2427

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by BMBF and BMU via Kompetenzverbund Strahlenforschung (KVSF) grant 03NUK007 and FP6 EU contract “Risc-Rad”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Rosemann.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00411-010-0347-4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez-Vasconcellos, I., Domke, T., Kuosaite, V. et al. Differential effects of genes of the Rb1 signalling pathway on osteosarcoma incidence and latency in alpha-particle irradiated mice. Radiat Environ Biophys 50, 135–141 (2011). https://doi.org/10.1007/s00411-010-0339-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-010-0339-4

Keywords

Navigation