Skip to main content
Log in

Microlite transfer by disaggregation of mafic inclusions following magma mixing at Soufrière Hills volcano, Montserrat

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Soufrière Hills volcano on Montserrat has for the past 12 years been erupting andesite with basaltic to basaltic–andesite inclusions. The andesite contains a wide variety of phenocryst textures and strongly zoned microlites. Analysis of minor elements in both phenocrysts and microlites allows us to put detailed constraints on their origins. Compositions of clinopyroxene, from overgrowth rims on quartz and orthopyroxene and coarse-grained breakdown rims on hornblende, are identical to those from the mafic inclusions, indicating that these rims form during interaction with mafic magma. In contrast, resorbed quartz and reversely zoned orthopyroxenes form during heating. Microlites of plagioclase and orthopyroxene are chemically distinct from the phenocrysts, being enriched in Fe and Mg, and Al and Ca respectively. However, microlites of plagioclase, orthopyroxene and clinopyroxene are indistinguishable from the compositions of these phases in the mafic inclusions. We infer that the inclusions disaggregated under conditions of high shear stress during ascent in the conduit, transferring mafic material into the andesite groundmass. The mafic component of the system is therefore greater than previously thought. The presence of mafic-derived microlites in the andesite groundmass also means that care must be taken when using this as a starting material for phase equilibrium experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allègre CJ, Provost A, Jaupart C (1981) Oscillatory zoning: a pathological case of crystal growth. Nature 294:223–228. doi:10.1038/294223a0

    Article  Google Scholar 

  • Anderson AT (1976) Magma mixing: petrological process and volcanological tool. J Volcanol Geotherm Res 1:3–33. doi:10.1016/0377-0273(76)90016-0

    Article  Google Scholar 

  • Andersen DJ, Lindsley DH, Davidson PM (1993) QUILF: A Pascal program to assess equilibria among Fe–Mg–Ti oxides, pyroxenes, olivine and quartz. Comput Geosci 19:1333–1350. doi:10.1016/0098-3004(93)90033-2

    Article  Google Scholar 

  • Arculus RJ (1976) Geology and geochemistry of the alkali basalt-andesite association of Grenada, Lesser Antilles island arc. Geol Soc Am Bull 87:612–624. doi :10.1130/0016-7606(1976)87<612:GAGOTA>2.0.CO;2

    Article  Google Scholar 

  • Arculus RJ, Wills KJA (1980) The petrology of plutonic blocks and inclusions from the Lesser Antilles island arc. J Petrol 21:743–799

    Google Scholar 

  • Bachmann O, Dungan MA (2002) Temperature-induced Al-zoning in hornblendes of the Fish Canyon magma, Colorado. Am Mineral 87:1062–1076

    Google Scholar 

  • Bacon CR (1986) Magmatic inclusions in silicic and intermediate volcanic rocks. J Geophys Res 91:6091–6112. doi:10.1029/JB091iB06p06091

    Article  Google Scholar 

  • Bacon CR (1989) Crystallization of accessory phases in magmas by local saturation adjacent to phenocrysts. Geochim Cosmochim Acta 53:1055–1066. doi:10.1016/0016-7037(89)90210-X

    Article  Google Scholar 

  • Barclay J, Rutherford MJ, Carroll MR et al (1998) Experimental phase equilibria constraints on pre-eruptive storage conditions of the Soufrière Hills magma. Geophys Res Lett 25:3437–3440. doi:10.1029/98GL00856

    Article  Google Scholar 

  • Beattie P (1993) Olivine-melt and orthopyroxene-melt equilibria. Contrib Mineral Petrol 115:103–111. doi:10.1007/BF00712982

    Article  Google Scholar 

  • Bindeman IN, Davis AM, Drake MJ (1998) Ion microprobe study of plagioclase-basalt partition experiments at natural concentration levels of trace elements. Geochim Cosmochim Acta 62:1175–1193. doi:10.1016/S0016-7037(98)00047-7

    Article  Google Scholar 

  • Blake S, Fink JH (2000) On the deformation and freezing of enclaves during magma mixing. J Volcanol Geotherm Res 95:1–8. doi:10.1016/S0377-0273(99)00129-8

    Article  Google Scholar 

  • Blundy JD, Sparks RSJ (1992) Petrogenesis of mafic inclusions in granitoids of the Adamello Massif, Italy. J Petrol 33:1039–1104

    Google Scholar 

  • Blundy J, Cashman K, Humphreys M (2006) Magma heating by decompression-driven crystallization beneath andesite volcanoes. Nature 443:76–80. doi:10.1038/nature05100

    Article  Google Scholar 

  • Bottinga Y, Kudo A, Weill D (1966) Some observations on oscillatory zoning and crystallization of magmatic plagioclase. Am Mineral 51:792–806

    Google Scholar 

  • Browne BL, Eichelberger JC, Patina LC et al (2006) Generation of porphyritic and equigranular mafic enclaves during magma recharge events at Unzen Volcano, Japan. J Petrol 47:301–328. doi:10.1093/petrology/egi076

    Article  Google Scholar 

  • Buckley VJE, Sparks RSJ, Wood BJ (2006) Hornblende dehydration reactions during magma ascent at Soufrière Hills Volcano, Montserrat. Contrib Mineral Petrol 151:121–140. doi:10.1007/s00410-005-0060-5

    Article  Google Scholar 

  • Cashman KV (1992) Groundmass crystallization of Mount St. Helens dacite, 1980–1986: A tool for interpreting shallow magmatic processes. Contrib Mineral Petrol 109:431–449. doi:10.1007/BF00306547

    Article  Google Scholar 

  • Clynne MA (1999) A complex magma mixing origin for rocks erupted in 1915, Lassen Peak, California. J Petrol 40:105–132. doi:10.1093/petrology/40.1.105

    Article  Google Scholar 

  • Couch S, Sparks RSJ, Carroll MR (2001) Mineral disequilibrium in lavas explained by convective self-mixing in open magma chambers. Nature 411:1037–1039. doi:10.1038/35082540

    Article  Google Scholar 

  • Couch S, Harford CL, Sparks RSJ, Carroll MR (2003a) Experimental constraints on the conditions of formation of highly calcic plagioclase microlites at the Soufrière Hills Volcano, Montserrat. J Petrol 44:1455–1475. doi:10.1093/petrology/44.8.1455

    Article  Google Scholar 

  • Couch S, Sparks RSJ, Carroll MR (2003b) The kinetics of degassing-induced crystallization at Soufrière Hills Volcano, Montserrat. J Petrol 44:1477–1502. doi:10.1093/petrology/44.8.1477

    Article  Google Scholar 

  • Devine JD, Murphy MD, Rutherford MJ et al (1998) Petrologic evidence for pre-eruptive pressure-temperature conditions and recent reheating, of andesitic magma erupting at the Soufrière Hills Volcano, Montserrat, W.I. Geophys Res Lett 25:3669–3672. doi:10.1029/98GL01330

    Article  Google Scholar 

  • Devine JD, Rutherford MJ, Norton GE et al (2003) Magma storage region processes inferred from geochemistry of Fe–Ti oxides in andesitic magma, Soufriere Hills Volcano, Montserrat, W.I. J Petrol 44:1375–1400. doi:10.1093/petrology/44.8.1375

    Article  Google Scholar 

  • Eichelberger JC (1978) Andesitic volcanism and crustal evolution. Nature 275:21–27. doi:10.1038/275021a0

    Article  Google Scholar 

  • Eichelberger JC (1980) Vesiculation of mafic magma during replenishment of silicic magma chambers. Nature 288:446–450. doi:10.1038/288446a0

    Article  Google Scholar 

  • Feeley TC, Dungan MA (1996) Compositional and dynamic controls on mafic-silicic magma interactions at continental arc volcanoes: evidence from Cordòn El Guadal, Tatara, San Pedro Complex, Chile. J Petrol 37:1547–1577. doi:10.1093/petrology/37.6.1547

    Article  Google Scholar 

  • Frost BR, Lindsley DH (1991) Occurrence of iron–titanium oxides in igneous rocks. Rev Mineral 25:433–468

    Google Scholar 

  • Garcia MO, Jacobson SS (1979) Crystal clots, amphibole fractionation and the evolution of calc-alkaline magmas. Contrib Mineral Petrol 69:319–327. doi:10.1007/BF00372257

    Article  Google Scholar 

  • Ginibre C, Wörner G, Kronz A (2002) Minor- and trace-element zoning in plagioclase: implications for magma chamber processes at Parinacota Volcano, northern Chile. Contrib Mineral Petrol 143:300–315

    Google Scholar 

  • Hammond PA, Taylor LA (1982) The ilmenite/titano-magnetite assemblage: kinetics of re-equilibration. Earth Planet Sci Lett 61:143–150. doi:10.1016/0012-821X(82)90047-4

    Article  Google Scholar 

  • Holland T, Blundy J (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib Mineral Petrol 116:433–447. doi:10.1007/BF00310910

    Article  Google Scholar 

  • Leake BE, Wooley AR, Arps CES (1997) Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on new minerals and mineral names. Can Mineral 35:219–246

    Google Scholar 

  • Lindsley DH (1983) Pyroxene thermometry. Am Mineral 68:477–493

    Google Scholar 

  • MacGregor AG (1938) The Royal Society expedition to Montserrat, B.W.I. The volcanic history and petrology of Montserrat, with observations on Mt Pele, in Martinique. Philos Trans R Soc Lond 229:1–90. doi:10.1098/rstb.1938.0002

    Article  Google Scholar 

  • Martel C, Radadi Ali A, Poussineau S et al (2006) Basalt-inherited microlites in silicic magmas: evidence from Mount Pelée (Martinique, French West Indies). Geology 34:905–908. doi:10.1130/G22672A.1

    Article  Google Scholar 

  • Martin VM, Pyle DM, Holness MB (2006) The role of crystal frameworks in the preservation of enclaves during magma mixing. Earth Planet Sci Lett 248:787–799. doi:10.1016/j.epsl.2006.06.030

    Article  Google Scholar 

  • Melnik O, Sparks RSJ (1999) Nonlinear dynamics of lava dome extrusion. Nature 402:37–41. doi:10.1038/46950

    Article  Google Scholar 

  • Murphy MD, Sparks RSJ, Barclay J et al (2000) Remobilization of andesite magma by intrusion of mafic magma at the Soufrière Hills Volcano, Montserrat, West Indies. J Petrol 41:21–42. doi:10.1093/petrology/41.1.21

    Article  Google Scholar 

  • Nelson ST, Montana A (1992) Sieve-textured plagioclase in volcanic rocks produced by rapid decompression. Am Mineral 77:1242–1249

    Google Scholar 

  • Perret F (1939) The volcano-seismic crisis at Montserrat 1933–1937, vol 512. Carnegie Institue of Washington Publication, Washington, 76 pp

  • Phinney WC (1992) Partition coefficients for iron between plagioclase and basalt as a function of oxygen fugacity: implications for Archaean and lunar anorthosites. Geochim Cosmochim Acta 56:1885–1895. doi:10.1016/0016-7037(92)90318-D

    Article  Google Scholar 

  • Pichavant M, Costa F, Burgisser A et al (2007) Equilibration scales in silicic to intermediate magmas: implications for experimental studies. J Petrol 48:1955–1972. doi:10.1093/petrology/egm045

    Article  Google Scholar 

  • Plechov PY, Tsai AE, Shcherbakov VD et al (2008a) Opacitization conditions of hornblende in Bezymyannyi Volcano andesites (March 30, 1956 eruption). Petrol 16:19–35

    Google Scholar 

  • Plechov PY, Fomin IS, Melnik OE et al (2008b) Evolution of melt composition during intrusion of basalts into a silicic magma chamber. Mosc Univ Geol Bull 63:247–257. doi:10.3103/S0145875208040054

    Article  Google Scholar 

  • Ruprecht P, Wörner G (2007) Variable regimes in magma systems documented in plagioclase zoning patterns: El Misti stratovolcano and Andahua monogenetic cones. J Volcanol Geotherm Res 165:142–162. doi:10.1016/j.jvolgeores.2007.06.002

    Article  Google Scholar 

  • Rutherford MJ, Devine JD (2003) Magmatic conditions and magma ascent as indicated by hornblende phase equilibria and reactions in the 1995–2002 Soufrière Hills magma. J Petrol 44:1433–1454. doi:10.1093/petrology/44.8.1433

    Article  Google Scholar 

  • Rutherford MJ, Hill PM (1993) Magma ascent rates from amphibole breakdown: an experimental study applied to the 1980–1986 Mount St Helens eruptions. J Geophys Res 98:19667–19685. doi:10.1029/93JB01613

    Article  Google Scholar 

  • Sato H, Holtz F, Behrens H, Botcharnikov R, Nakada S (2005) Experimental petrology of the 1991–1995 Unzen dacite, Japan. Part II: Cl/OH partitioning between hornblende and melt and its implications for the origin of oscillatory zoning of hornblende phenocrysts. J Petrol 46:339–354. doi:10.1093/petrology/egh078

    Article  Google Scholar 

  • Scarfe CM, Fuji T (1987) Petrology of crystal clots in the pumice of Mount St. Helens’ March 19, 1982 eruption: significant role of Fe–Ti oxide crystallisation. J Volcanol Geotherm Res 34:1–14. doi:10.1016/0377-0273(87)90088-6

    Article  Google Scholar 

  • Schumacher JC (1997) The estimation of the proportion of ferric iron in the electron-microprobe analysis of amphiboles. Can Mineral 35:238–246

    Google Scholar 

  • Sepp B, Kunzman T (2001) The stability of clinopyroxene in the system CaO–MgO–SiO2–TiO2 (CMST). Am Mineral 86:265–270

    Google Scholar 

  • Shepherd JB, Tomblin JF, Woo DA (1971) Volcano-seismic crisis in Montserrat, West Indies, 1966–1967. Bull Volcanol 35:143–163. doi:10.1007/BF02596813

    Article  Google Scholar 

  • Singer BS, Dungan MA, Layne GD (1995) Textures and Sr, Ba, Mg, Fe, K, and Ti compositional profiles in volcanic plagioclase: Clues to the dynamics of calc-alkaline magma chambers. Am Mineral 80:776–798

    Google Scholar 

  • Sparks RSJ, Marshall LA (1986) Thermal and mechanical constraints on mixing between mafic and silicic magmas. J Volcanol Geotherm Res 29:99–124. doi:10.1016/0377-0273(86)90041-7

    Article  Google Scholar 

  • Sparks RSJ, Murphy MD, Lejeune AM et al (2000) Control on the emplacement of the andesite lava dome of the Soufrière Hills Volcano, Montserrat by degassing-induced crystallization. Terra Nova 12:14–20. doi:10.1046/j.1365-3121.2000.00267.x

    Article  Google Scholar 

  • Stewart DC (1975) Crystal clots in calc-alkaline andesites as breakdown products of high-Al amphiboles. Contrib Mineral Petrol 53:195–204. doi:10.1007/BF00372604

    Article  Google Scholar 

  • Stormer JC (1983) The effects of recalculation on estimates of temperature and oxygen fugacity from analyses of multi-component iron–itanium oxides. Am Mineral 66:586–594

    Google Scholar 

  • Venezky DY, Rutherford MJ (1999) Petrology and Fe–Ti oxide re-equilibration of the 1991 Mount Unzen mixed magma. J Volcanol Geotherm Res 89:213–230. doi:10.1016/S0377-0273(98)00133-4

    Article  Google Scholar 

  • Wilke M, Behrens H (1999) The dependence of the partitioning of iron and europium between plagioclase and hydrous tonalitic melt on oxygen fugacity. Contrib Mineral Petrol 137:102–114. doi:10.1007/s004100050585

    Article  Google Scholar 

  • Zellmer GF, Hawkesworth CJ, Sparks RSJ et al (2003a) Geochemical evolution of the Soufrière Hills Volcano, Montserrat, Lesser Antilles volcanic arc. J Petrol 44:1349–1374. doi:10.1093/petrology/44.8.1349

    Article  Google Scholar 

  • Zellmer GF, Sparks RSJ, Hawkesworth CJ et al (2003b) Magma emplacement and remobilization timescales beneath Montserrat: insights from Sr and Ba zonation in plagioclase phenocrysts. J Petrol 44:1413–1431. doi:10.1093/petrology/44.8.1413

    Article  Google Scholar 

Download references

Acknowledgments

This study is published with the permission of the Director of the Montserrat Volcano Observatory. MCSH was supported by a Junior Research Fellowship at Trinity College, University of Cambridge. We are grateful to Chris Hayward for his assistance with electron microprobe analysis. The manuscript was improved following constructive reviews from Georg Zellmer and an anonymous reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madeleine C. S. Humphreys.

Additional information

Communicated by J. Blundy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Humphreys, M.C.S., Christopher, T. & Hards, V. Microlite transfer by disaggregation of mafic inclusions following magma mixing at Soufrière Hills volcano, Montserrat. Contrib Mineral Petrol 157, 609–624 (2009). https://doi.org/10.1007/s00410-008-0356-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-008-0356-3

Keywords

Navigation