Skip to main content
Log in

Basic Mechanisms of Cough: Current Understanding and Remaining Questions

  • Published:
Lung Aims and scope Submit manuscript

Abstract

Considerable effort in many laboratories has gone into describing the afferent nerve subtypes that initiate cough, and the ionic mechanisms the activation and modulation of these nerves. In this brief overview, we have attempted to summarize some of what is understood in these areas. In addition, we have tried to highlight many of the important basic questions that remain to be answered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Larsell O, Burget GE (1924) The effects of mechanical and chemical stimulation of the tracheo-bronchial mucous membrane. Am J Physiol 70:311–321

    Google Scholar 

  2. Widdicombe JG (1954) Respiratory reflexes from the trachea and bronchi of the cat. J Physiol 123:55–70

    PubMed  CAS  Google Scholar 

  3. Widdicombe JG (1961) The activity of pulmonary stretch receptors during bronchoconstriction, pulmonary oedema, atelectasis and breathing against a resistance. J Physiol 159:436–450

    PubMed  CAS  Google Scholar 

  4. Liu F, Carrithers JA, Shirer HW, Orr JA (1992) Thromboxane A2 mimetic, U46,619, and slowly adapting stretch receptor activity in the rabbit. Respir Physiol 88:77–86

    Article  PubMed  CAS  Google Scholar 

  5. Bergren DR, Gustafson JM, Myers DL (1984) Effect of prostaglandin F2 alpha on pulmonary rapidly-adapting-receptors in the guinea pig. Prostaglandins 27:391–405

    Article  PubMed  CAS  Google Scholar 

  6. Bergren DR, Sampson SR (1982) Characterization of intrapulmonary, rapidly adapting receptors of guinea pigs. Respir Physiol 47:83–95

    Article  PubMed  CAS  Google Scholar 

  7. Canning BJ, Mazzone SB, Meeker SN, Mori N, Reynolds SM, Undem BJ (2004) Identification of the tracheal and laryngeal afferent neurones mediating cough in anaesthetized guinea-pigs. J Physiol 557:543–558

    Article  PubMed  CAS  Google Scholar 

  8. Coleridge JC, Coleridge HM (1984) Afferent vagal C fibre innervation of the lungs and airways and its functional significance. Rev Physiol Biochem Pharmacol 99:1–110

    Article  PubMed  CAS  Google Scholar 

  9. Undem BJ, Chuaychoo B, Lee MG, Weinreich D, Myers AC, Kollarik M (2004) Subtypes of vagal afferent C-fibres in guinea-pig lungs. J Physiol 556:905–917

    Article  PubMed  CAS  Google Scholar 

  10. Baker CVH (2005) The Embryology of Vagal Sensory Neurons. Boca Raton, FL: CRC Press, pp 3–26

    Google Scholar 

  11. Chuaychoo B, Lee MG, Kollarik M, Pullmann R Jr, Undem BJ (2006) Evidence for both adenosine A1 and A2A receptors activating single vagal sensory C-fibres in guinea pig lungs. J Physiol 575:481–490

    Article  PubMed  CAS  Google Scholar 

  12. Chuaychoo B, Lee MG, Kollarik M, Undem BJ (2005) Effect of 5-hydroxytryptamine on vagal C-fiber subtypes in guinea pig lungs. Pulm Pharmacol Ther 18:269–276

    Article  PubMed  CAS  Google Scholar 

  13. Tatar M, Webber SE, Widdicombe JG (1988) Lung C-fibre receptor activation and defensive reflexes in anaesthetized cats. J Physiol 402:411–420

    PubMed  CAS  Google Scholar 

  14. Canning BJ, Mori N, Mazzone SB (2006) Vagal afferent nerves regulating the cough reflex. Respir Physiol Neurobiol 152:223–242

    Article  PubMed  Google Scholar 

  15. McAlexander MA, Myers AC, Undem BJ (1999) Adaptation of guinea-pig vagal airway afferent neurones to mechanical stimulation. J Physiol 521(Pt 1):239–247

    Article  PubMed  CAS  Google Scholar 

  16. Gillespie PG, Walker RG (2001) Molecular basis of mechanosensory transduction. Nature 413:194–202

    Article  PubMed  CAS  Google Scholar 

  17. Bounoutas A, Chalfie M (2007) Touch sensitivity in Caenorhabditis elegans. Pflugers Arch 454:691–702

    Article  PubMed  CAS  Google Scholar 

  18. Lingueglia E (2007) Acid-sensing ion channels in sensory perception. J Biol Chem 282:17325–17329

    Article  PubMed  CAS  Google Scholar 

  19. Carr MJ, Gover TD, Weinreich D, Undem BJ (2001) Inhibition of mechanical activation of guinea-pig airway afferent neurons by amiloride analogues. Br J Pharmacol 133:1255–1262

    Article  PubMed  CAS  Google Scholar 

  20. Huang M, Gu G, Ferguson EL, Chalfie M (1995) A stomatin-like protein necessary for mechanosensation in C. elegans. Nature 378:292–295

    Article  PubMed  CAS  Google Scholar 

  21. Wetzel C, Hu J, Riethmacher D, Benckendorff A, Harder L, Eilers A, Moshourab R, Kozlenkov A, Labuz D, Caspani O, Eerdmann B, Machelska H, Heppenstall PA, Lewin GR (2007) A stomatin-domain protein essential for touch sensation in the mouse. Nature 445:206–209

    Article  PubMed  CAS  Google Scholar 

  22. Nilius B, Owsianik G, Voets T, Peters JA (2007) Transient receptor potential cation channels in disease. Physiol Rev 87:165–217

    Article  PubMed  CAS  Google Scholar 

  23. Vriens J, Watanabe H, Janssens A, Droogmans G, Voets T, Nilius B (2004) Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc Natl Acad Sci U S A 101:396–401

    Article  PubMed  CAS  Google Scholar 

  24. Muraki K, Iwata Y, Katanosaka Y, Ito T, Ohya S, Shigekawa M, Imaizumi Y (2003) TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes. Circ Res 93:829–838

    Article  PubMed  CAS  Google Scholar 

  25. Birder LA, Nakamura Y, Kiss S, Nealen ML, Barrick S, Kanai AJ, Wang E, Ruiz G, De Groat WC, Apodaca G, Watkins S, Caterina MJ (2002) Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1. Nat Neurosci 5:856–860

    Article  PubMed  CAS  Google Scholar 

  26. Kwan KY, Allchorne AJ, Vollrath MA, Christensen AP, Zhang DS, Woolf CJ, Corey DP (2006) TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50:277–289

    Article  PubMed  CAS  Google Scholar 

  27. Maroto R, Raso A, Wood TG, Kurosky A, Martinac B, Hamill OP (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7:179–185

    Article  PubMed  CAS  Google Scholar 

  28. Carr MJ, Undem BJ (2003) Pharmacology of vagal afferent nerve activity in guinea pig airways. Pulm Pharmacol Ther 16:45–52

    Article  PubMed  CAS  Google Scholar 

  29. Shin J, Cho H, Hwang SW, Jung J, Shin CY, Lee SY, Kim SH, Lee MG, Choi YH, Kim J, Haber NA, Reichling DB, Khasar S, Levine JD, Oh U (2002) Bradykinin-12-lipoxygenase-VR1 signaling pathway for inflammatory hyperalgesia. Proc Natl Acad Sci U S A 99:10150–10155

    Article  PubMed  CAS  Google Scholar 

  30. Chuang HH, Prescott ED, Kong H, Shields S, Jordt SE, Basbaum AI, Chao MV, Julius D (2001) Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411:957–962

    Article  PubMed  CAS  Google Scholar 

  31. Kollarik M, Undem BJ (2004) Activation of bronchopulmonary vagal afferent nerves with bradykinin, acid and vanilloid receptor agonists in wild-type and TRPV1-/- mice. J Physiol 555:115–123

    Article  PubMed  CAS  Google Scholar 

  32. Carr MJ, Kollarik M, Meeker SN, Undem BJ (2003) A role for TRPV1 in bradykinin-induced excitation of vagal airway afferent nerve terminals. J Pharmacol Exp Ther 304:1275–1279

    Article  PubMed  CAS  Google Scholar 

  33. Sung KW, Kirby M, McDonald MP, Lovinger DM, Delpire E (2000) Abnormal GABAA receptor-mediated currents in dorsal root ganglion neurons isolated from Na-K-2Cl cotransporter null mice. J Neurosci 20:7531–7538

    PubMed  CAS  Google Scholar 

  34. Mazzone SB, McGovern AE (2006) Na+-K+-2Cl cotransporters and Cl channels regulate citric acid cough in guinea pigs. J Appl Physiol 101:635–643

    Article  PubMed  CAS  Google Scholar 

  35. Oh EJ, Weinreich D (2004) Bradykinin decreases K(+) and increases Cl(-) conductances in vagal afferent neurones of the guinea pig. J Physiol 558:513–526

    Article  PubMed  CAS  Google Scholar 

  36. Lee MG, Macglashan DW Jr, Undem BJ (2005) Role of chloride channels in bradykinin-induced guinea pig airway vagal C-fibre activation. J Physiol 566:205–212

    Article  PubMed  CAS  Google Scholar 

  37. Lee LY, Kwong K, Lin YS, Gu Q (2002) Hypersensitivity of bronchopulmonary C-fibers induced by airway mucosal inflammation: cellular mechanisms. Pulm Pharmacol Ther 15:199–204

    Article  PubMed  CAS  Google Scholar 

  38. Carr MJ, Undem BJ (2001) Inflammation-induced plasticity of the afferent innervation of the airways. Environ Health Perspect 109(Suppl 4):567–571

    Article  PubMed  CAS  Google Scholar 

  39. Schmidt R, Schmelz M, Forster C, Ringkamp M, Torebjork E, Handwerker H (1995) Novel classes of responsive and unresponsive C nociceptors in human skin. J Neurosci 15:333–341

    PubMed  CAS  Google Scholar 

  40. Schaible HG, Schmidt RF (1988) Excitation and sensitization of fine articular afferents from cat’s knee joint by prostaglandin E2. J Physiol 403:91–104

    PubMed  CAS  Google Scholar 

  41. Neugebauer V, Schaible HG, Schmidt RF (1989) Sensitization of articular afferents to mechanical stimuli by bradykinin. Pflugers Arch 415:330–335

    Article  PubMed  CAS  Google Scholar 

  42. Lee LY, Morton RF (1993) Histamine enhances vagal pulmonary C-fiber responses to capsaicin and lung inflation. Respir Physiol 93:83–96

    Article  PubMed  CAS  Google Scholar 

  43. Pezet S, McMahon SB (2006) Neurotrophins: mediators and modulators of pain. Annu Rev Neurosci 29:507–538

    Article  PubMed  CAS  Google Scholar 

  44. Hunter DD, Myers AC, Undem BJ (2000) Nerve growth factor-induced phenotypic switch in guinea pig airway sensory neurons. Am J Respir Crit Care Med 161:1985–1990

    PubMed  CAS  Google Scholar 

  45. Woolf CJ (2007) Central sensitization: uncovering the relation between pain and plasticity. Anesthesiology 106:864–867

    Article  PubMed  Google Scholar 

  46. Mazzone SB, Canning BJ (2002) Synergistic interactions between airway afferent nerve subtypes mediating reflex bronchospasm in guinea pigs. Am J Physiol Regul Integr Comp Physiol 283:R86–R98

    PubMed  CAS  Google Scholar 

  47. Mazzone SB, Mori N, Canning BJ (2005) Synergistic interactions between airway afferent nerve subtypes regulating the cough reflex in guinea-pigs. J Physiol 569:559–573

    Article  PubMed  CAS  Google Scholar 

  48. Chen CY, Bonham AC, Schelegle ES, Gershwin LJ, Plopper CG, Joad JP (2001) Extended allergen exposure in asthmatic monkeys induces neuroplasticity in nucleus tractus solitarius. J Allergy Clin Immunol 108:557–562

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley J. Undem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, MG., Undem, B.J. Basic Mechanisms of Cough: Current Understanding and Remaining Questions. Lung 186 (Suppl 1), 10–16 (2008). https://doi.org/10.1007/s00408-007-9060-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-007-9060-8

Keywords

Navigation