Skip to main content
Log in

On the history of the isomorphism problem of dynamical systems with special regard to von Neumann’s contribution

  • Published:
Archive for History of Exact Sciences Aims and scope Submit manuscript

Abstract

This article reviews some major episodes in the history of the spatial isomorphism problem of dynamical systems theory (ergodic theory). In particular, by analysing, both systematically and in historical context, a hitherto unpublished letter written in 1941 by John von Neumann to Stanislaw Ulam, this article clarifies von Neumann’s contribution to discovering the relationship between spatial isomorphism and spectral isomorphism. The main message of the article is that von Neumann’s argument described in his letter to Ulam is the very first proof that spatial isomorphism and spectral isomorphism are not equivalent because spectral isomorphism is weaker than spatial isomorphism: von Neumann shows that spectrally isomorphic ergodic dynamical systems with mixed spectra need not be spatially isomorphic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramov L. (1962) Metric automorphism with quasi-discrete spectrum. Izvestiya Rossiiskoi Akademii Nauk SSSR Seriya Matematicheskaya 26: 513–530

    MathSciNet  MATH  Google Scholar 

  • Abramov L. (1964) Metric automorphisms with a quasi-discrete spectrum. American Mathematical Society Translations (2(39): 37–56

    Google Scholar 

  • Alicki R., Fannes M. (2001) Quantum Dynamical Systems. Oxford University Press, Oxford

    Book  MATH  Google Scholar 

  • Anzai H. (1951) Ergodic skew product transformations on the torus. Osaka Mathematical Journal 3: 83–99

    MathSciNet  MATH  Google Scholar 

  • Arnold V., Avez A. (1968) Ergodic Problems of Classical Mechanics. W. A. Benjamin, New York

    Google Scholar 

  • Choksi J. (1965) Nonergodic transformations with discrete spectrum. Illinois Journal of Mathematics 9: 307–320

    MathSciNet  MATH  Google Scholar 

  • Cornfeld I., Fomin S., Sinai Y. (1982) Ergodic Theory. Springer, Berlin

    MATH  Google Scholar 

  • Frigg, R.and Werndl C. 2011. Entropy—a guide for the perplexed, in C. Beisbart and S. Hartmann, eds, Probabilities in Physics, Oxford: Oxford University Press (forthcoming).

  • Halmos P. (1944) In general a measure-preserving transformation is mixing. The Annals of Mathematics 45: 786–792

    Article  MathSciNet  MATH  Google Scholar 

  • Halmos P. (1949) Measurable transformations. Bulletin of the American Mathematical Society 55: 1015–1043

    Article  MathSciNet  MATH  Google Scholar 

  • Halmos P. (1951) Introduction to Hilbert Space and the Theory of Spectral Multiplicity. Chelsea Publishing Company, New York

    MATH  Google Scholar 

  • Halmos P. (1956) Lectures on Ergodic Theory. Chelsea Publishing Company, New York

    MATH  Google Scholar 

  • Halmos P. (1957) Von Neumann on measure and ergodic theory. Bulletin of the American Mathematical Society Translations 64: 86–94

    Article  Google Scholar 

  • Halmos P. (1961) Recent progress in ergodic theory. Bulletin of the American Mathematical Society 67: 70–80

    Article  MathSciNet  MATH  Google Scholar 

  • Kolmogorov A. (1958) A new metric invariant of transitive dynamical systems and automorphisms of Lebesgue spaces. Doklady Akademii Nauk SSSR 119: 861–864

    MathSciNet  MATH  Google Scholar 

  • Kolmogorov, A. 1986. A new metric invariant for transitive dynamical systems and automorphisms of Lebesgue spaces. In Proceedings of the Steklov Institute of Mathematics 169: 97–102.

  • Koopman, B. (1931) Hamiltonian systems and transformations in Hilbert space. In: Proceedings of the National Academy of Sciences of the United States of America 17: 315–318.

  • Koopman, B., and von Neumann, J. 1932. Dynamical systems of continuous spectra. In: Proceedings of the National Academy of Sciences of the United States of America 18: 255–263. Reprinted in (Taub, A., ed. 1961a. John von Neumann: Collected Works, Vol. II. Operators, Ergodic Theory and Almost Periodic Functions in a Group. New York and Oxford: Pergamon Press) No. 14.

  • Lo Bello A. (1983) On the origin and history of ergodic theory. Bollettino di Storia delle Scienze Matematiche 3: 73–75

    MathSciNet  Google Scholar 

  • Mackey G. (1974) Ergodic theory and its significance for statistical mechanics and probability theory. Advances in Mathematics 12: 178–268

    Article  MathSciNet  MATH  Google Scholar 

  • Mackey, G. 1990. Von Neumann and the early days of ergodic theory. In: The Legacy of John von Neumann, edited by J. Glimm, J. Impagliazzo and I. Singers. Vol. 50 of Proceedings of Symposia in Pure Mathematics, 25–38 (Providence: American Mathematical Society, 1990).

  • Ornstein D. (1970) Bernoulli-shifts with the same entropy are isomorphic. Advances in Mathematics 4: 337–352

    Article  MathSciNet  MATH  Google Scholar 

  • Ornstein D. (1974) Ergodic Theory, Randomness, and Dynamical Systems. Yale University Press, New Haven and London

    MATH  Google Scholar 

  • Ornstein, D. 1990. Von Neumann and ergodic theory. In: The Legacy of John von Neumann, edited by J. Glimm, J. Impagliazzo and I. Singers. Vol. 50 of Proceedings of Symposia in Pure Mathematics, 39–42 (Providence: American Mathematical Society, 1990).

  • Parry W. (1971) Metric classification of ergodic nilflows and unipotent affines. American Journal of Mathematics 93: 819–828

    Article  MathSciNet  MATH  Google Scholar 

  • Petersen K. (1983) Ergodic Theory, Cambridge: Cambridge University Press

    MATH  Google Scholar 

  • Rédei, M., ed. 2005. John von Neumann: Selected Letters, Vol. 27 of History of Mathematics. Rhode Island: American Mathematical Society and London Mathematical Society

  • Reed M., Simon B. (1980) Methods of Modern Mathematical Physics I: Functional Analysis. Academic Press, San Diego

    MATH  Google Scholar 

  • Rohlin V. (1960) New progress in the theory of transformations with invariant measure. Russian Mathematical Surveys 15: 1–22

    Article  MathSciNet  Google Scholar 

  • Rohlin V. (1967) Lectures on the entropy theory of measure-preserving transformations. Russian Mathematical Surveys 22: 1–52

    Article  Google Scholar 

  • Sinai Y. (1959) On the concept of entropy for dynamical systems. Doklady Akademii Nauk SSSR 124: 768–771

    MathSciNet  MATH  Google Scholar 

  • Sinai Y. (1963) Probabilistic ideas in ergodic theory. American Mathematical Society Translations 31: 62–84

    MATH  Google Scholar 

  • Sinai Y. (1989) Kolmogorov’s work on ergodic theory. The Annals of Probability 17: 833–839

    Article  MathSciNet  MATH  Google Scholar 

  • Szász D. (1996) Boltzmann’s ergodic hypothesis. A conjecture for centuries? Studia Scientia Mathematica Hungaria 31: 299–322

    MATH  Google Scholar 

  • Taub A., ed. 1961a. John von Neumann: Collected Works, Vol. II. Operators, Ergodic Theory and Almost Periodic Functions in a Group, Pergamon Press, New York and Oxford

  • Taub, A., ed. 1961b. John von Neumann: Collected Works, Vol. IV. Continuous Geometry and Other Topics, Pergamon Press, New York and Oxford.

  • von Neumann, J. 1932a. Applications of the ergodic hypothesis. Proceedings of the National Academy of Sciences 18: 263–266. Reprinted in (Taub, A., ed. 1961a. John von Neumann: Collected Works, Vol. II. Operators, Ergodic Theory and Almost Periodic Functions in a Group. New York and Oxford: Pergamon Press) No. 13.

  • von Neumann, J. 1932b. Proof of the quasi-ergodic hypothesis. Proceedings of the National Academy of Sciences of the United States of America 18: 70–82. Reprinted in (Taub, A., ed. 1961a. John von Neumann: Collected Works, Vol. II. Operators, Ergodic Theory and Almost Periodic Functions in a Group. New York and Oxford: Pergamon Press) No. 12.

  • von Neumann, J. 1932c. Zur Operatorenmethode in der klassischen Mechanik. The Annals of Mathematics 33: 587–642. Reprinted in (Taub, A., ed. 1961a. John von Neumann: Collected Works, Vol. II. Operators, Ergodic Theory and Almost Periodic Functions in a Group. New York and Oxford: Pergamon Press) No. 17.

  • von Neumann, J. and Halmos, P. 1942. Operator methods in classical mechanics II. Annals of Mathematics 43: 332–350. Reprinted in (Taub, A., ed. 1961b. John von Neumann: Collected Works, Vol. IV. Continuous Geometry and Other Topics. New York and Oxford: Pergamon Press) No. 23.

  • von Plato J. (1991) Boltzmann’s Ergodic Hypothesis. Archive for History of Exact Sciences 42: 71–89

    Article  MathSciNet  Google Scholar 

  • Weiss B. (1972) The isomorphism problem in ergodic theory. Bulletin of the American Mathematical Society 78: 668–684

    Article  MathSciNet  MATH  Google Scholar 

  • Werndl C. (2009a) Are deterministic descriptions and indeterministic descriptions observationally equivalent?. Studies in History and Philosophy of Modern Physics 40: 232–242

    Article  MathSciNet  Google Scholar 

  • Werndl C. (2009b) Justifying definitions in matemathics—going beyond Lakatos. Philosophia Mathematica 17: 313–340

    Article  MathSciNet  MATH  Google Scholar 

  • Zund J. (2002) Georg David Birkhoff and John von Neumann: A question of priority and the ergodic theorems, 1931–1932. Historia Mathematica 29: 138–156

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miklós Rédei.

Additional information

Communicated by: Jeremy Gray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rédei, M., Werndl, C. On the history of the isomorphism problem of dynamical systems with special regard to von Neumann’s contribution. Arch. Hist. Exact Sci. 66, 71–93 (2012). https://doi.org/10.1007/s00407-011-0089-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00407-011-0089-y

Keywords

Navigation