Skip to main content

Advertisement

Log in

Inverse association of cortisol serum levels with T-tau, P-tau 181 and P-tau 231 peptide levels and T-tau/Aβ 1–42 ratios in CSF in patients with mild Alzheimer’s disease dementia

  • ORIGINAL PAPER
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Hypercortisolemia and increased levels of hyperphosphorylated tau proteins in cerebrospinal fluid (CSF) are common features with pathogenic relevance in Alzheimer`s disease (AD). Experimental studies point to an influence of cortisol on Aβ and tau pathology in AD. Association of both parameters have not yet been described in a sample of AD patients. In the present study, serum levels of cortisol were determined in 26 patients with mild AD dementia and 20 age-matched healthy elderly controls by ELISA. In addition, we measured in AD patients CSF levels of cortisol, total tau (T-tau), tau phosphorylated at threonine 181 (P-tau 181), tau protein phosphorylated at threonine 231 (P-tau 231) and beta-Amyloid (Aβ) 1–42 and determined T-tau/Aβ 1–42 ratios in CSF. We found in AD patients significantly increased cortisol serum levels (551.4 ± 146.1 nmol/l; P = 0.002) as compared to healthy controls (435.3 ± 83.9 nmol/l). In AD patients, cortisol serum levels were significantly inversely correlated with T-tau (r = −0.496; P = 0.01), P-tau 181 (r = −0.558; P = 0.003) and P-tau 231 (−0.500; P = 0.009) protein levels and T-tau/Aβ 1–42 ratios (r = −0.450; P = 0.021) in CSF. In addition, cortisol serum levels showed a trend of positive correlation with Aβ 1–42 CSF levels (r = 0.386; P = 0.052). However, no significant correlations of cortisol serum with CSF levels as well as cortisol CSF levels with CSF biomarkers could be detected in AD patients. In conclusion, our results show that increased cortisol serum but not CSF levels are associated with minor signs of AD pathology in CSF, indicating a putative neuroprotective effect of moderately elevated cortisol serum levels in patients with mild AD dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abraham I, Harkany T, Horvath KM, Veenema AH, Penke B, Nyakas C, Luiten PGM (2000) Chronic corticosterone administration dose-depentently modulates Aβ(1–42)- and NMDA-induced neurodegeneration in rat magnocellular nucleus basalis. J Neuroendocrinol 12:486–494

    Article  PubMed  CAS  Google Scholar 

  2. Abraham IM, Harkany T, Horvath KM, Luiten PGM (2001) Action of glucocorticoids on survival of nerve cells: promoting neurodegeneration or neuroprotection? J Neuroendocrinol 13:749–760

    Article  PubMed  CAS  Google Scholar 

  3. Bierer LM, Hof PR, Purohit DP, Carlin L, Schmeidler J, Davis KL, Perl DP (1995) Neocortical neurofibrillary tangles correlate with dementia severity in Alzheimer’s disease. Arch Neurol 52(1):81–88

    PubMed  CAS  Google Scholar 

  4. Bjelakovic G, Beninati S, Pavlovic D, Kocic G, Jevtovic T, Kamenov B, Saranac LJ, Bjelakovic B, Stojanovic I, Basic J (2007) Glucocorticoids and oxidative stress. J Basic Clin Physiol Pharmacol 18(2):115–127

    PubMed  CAS  Google Scholar 

  5. Buerger K, Ewers M, Pirttila T, Zinkowski R, Alafuzoff I, Teipel SJ, DeBernardis J, Kerkman D, McCulloch C, Soininen H, Hampel H (2006) CSF hyperphosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer’s disease. Brain 129(Pt 11):3035–3041

    Article  PubMed  Google Scholar 

  6. Buerger K, Alafuzoff I, Ewers M, Pirttilä T, Zinkowski R, Hampel H (2007) No correlation between CSF tau protein phosphorylated at threonine 181 with neocortical neurofibrillary pathology in Alzheimer’s disease. Brain 130(Pt 10):e82, 1–2

    Google Scholar 

  7. Csernansky JG, Dong H, Fagan AM, Wang L, Xiong C, Holtzman DM, Morris JC (2006) Plasma cortisol and progression of dementia in subjects with Alzheimer-type dementia. Am J Psych 163:2164–2169

    Article  Google Scholar 

  8. Davis KL, Davis BM, Greenwald BS, Mohs RC, Mathe AA, Johns CA, Horvath TP (1986) Cortisol and Alzheimer’s disease, 1: basal studies. Am J Psych 143(3):300–305

    CAS  Google Scholar 

  9. Eikelenboom P, Veerhuis R, Scheper W, Rozemuller AJM, van Gool WA, Hoozemans JJM (2006) The significance of neuroinflammation in understanding Alzheimer’s disease. J Neural Transm 113:1685–1695

    Article  PubMed  CAS  Google Scholar 

  10. Engelborghs S, Sleegers K, Cras P, Brouwers N, Serneels S, De Leenheir E, Martin JJ, Vanmechelen E, Van Broeckhoven C, De Deyn PP (2007) No association of CSF biomarkers with APOEepsilon4, plaque and tangle burden in definite Alzheimer’s disease. Brain 130:2320–2326

    Article  PubMed  Google Scholar 

  11. Fagan AM, Roe CM, Xiong C, Mintun MA, Morris JC, Holtzman DM (2007) Cerebrospinal fluid tau/beta-amyloid(42) ratio as a prediction of cognitive decline in nondemented older adults. Arch Neurol 64(3):343–349

    Article  PubMed  Google Scholar 

  12. Folstein M, Folstein SE, McHugh PR (1975) “Mini-mental-state”. A practical method for grading the cognitive state of patients for the clinician. J Psych Res 12:189–198

    Article  CAS  Google Scholar 

  13. Green KN, Billings LM, Roozendaal B, McGaugh JL, La Ferla FM (2006) Glucocorticoids increase amyloid-beta and tau pathology in a mouse model of Alzheimer’s disease. J Neurosci 26(35):9047–9056

    Article  PubMed  CAS  Google Scholar 

  14. Hampel H, Buerger K, Zinkowski R, Teipel SJ, Goernitz A, Andreasen N, Sjoegren M, DeBernardis J, Kerkman D, Ishiguro K, Ohno H, Vanmechelen E, Vanderstichele H, McCulloch C, Moller HJ, Davies P, Blennow K (2004) Measurement of phosphorylated tau epitopes in the differential diagnosis of Alzheimer disease: a comparative cerebrospinal fluid study. Arch Gen Psych 61(1):95–102

    Article  CAS  Google Scholar 

  15. Hansson O, Zetterberg H, Buchhave P, Londos E, Blennow K, Minthon L (2006) Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol 5:228–234

    Article  PubMed  CAS  Google Scholar 

  16. Heneka MT, O’Banion MK (2007) Inflammatory processes in Alzheimer’s disease. J Neuroimmunol 184:69–91

    Article  PubMed  CAS  Google Scholar 

  17. Höschl C, Hajek T (2001) Hippocampal damage mediated by corticosteroids—a neuropsychiatric research challenge. Eur Arch Psychiatry Clin Neurosci 251(Suppl 2):1181–1188

    Google Scholar 

  18. Kang JE, Cirrit JR, Don H, Csernansky JG, Holtzman DM (2007) Acute stress increases interstitial fluid amyloid-β via corticotrophin-releasing factor and neuronal activity. Proc Nat Acad Sci 104(25):10673–10678

    Article  PubMed  CAS  Google Scholar 

  19. Kapaki E, Paraskevas GP, Zalonis I, Zournas C (2003) CSF tau protein and beta-amyloid (1–42) in Alzheimer’s disease diagnosis: discrimination from normal ageing and other dementias in the Greek population. Eur J Neurol 10(2):119–128

    Article  PubMed  CAS  Google Scholar 

  20. Kuhn HG, Cooper-Kuhn CM, Boekhoorn K, Lucassen PJ (2007) Changes in neurogenesis in dementia and Alzheimer mouse models: are they functionally relevant? Eur Arch Psychiatry Clin Neurosci 257(5):281–289

    Article  PubMed  Google Scholar 

  21. Martignoni E, Petraglia F, Costa A, Bono G, Genazzani AR, Nappi G (1990) Dementia of the Alzheimer type and hypothalamus-pituitary-adrenocortical axis: changes in cerebrospinal fluid corticotrophin releasing factor and plasma cortisol levels. Acta Neurol Scand 81(5):452–456

    Article  PubMed  CAS  Google Scholar 

  22. McColl A, Michlewska S, Dransfield I, Rossi AG (2007) Effects of glucocorticoids on apoptosis and clearance of apoptotic cells. Scientific World Journal 7:1165–1181

    PubMed  CAS  Google Scholar 

  23. Mc Khann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurol 34:939–944

    CAS  Google Scholar 

  24. Popp J, Schaper K, Kölsch H, Cvetanovska G, Rommel F, Klingmüller D, Dodel R, Wüllner U, Jessen F (2007) CSF cortisol in Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging doi:10.1016/j.neurobiolaging.2007.07.007

  25. Rasmuson S, Nasman B, Carlstrom K, Olsson T (2002) Increased levels of adrenocortical and gonadal hormones in mild to moderate Alzheimer’s disease. Dement Geriatr Cogn Disord 13(2):74–79

    Article  PubMed  CAS  Google Scholar 

  26. Sunderland T, Linker G, Mirza N, Putnam KT, Friedman DL, Kimmel LH, Bergeson J, Manetti GJ, Zimmermann M, Tang B, Bartko JJ, Cohen RM (2003) Decreased beta-amyloid 1–42 and increased tau levels in cerebrospinal fluid of patients with Alzheimer disease. J Am Med Assoc 289(16):2094–2103

    Article  Google Scholar 

  27. Wyss-Coray T (2006) Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med 12(9):1005–1015

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank AstraZeneca for measurement of P-tau 181 and P-tau 231 in CSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Laske.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laske, C., Stransky, E., Fritsche, A. et al. Inverse association of cortisol serum levels with T-tau, P-tau 181 and P-tau 231 peptide levels and T-tau/Aβ 1–42 ratios in CSF in patients with mild Alzheimer’s disease dementia. Eur Arch Psychiatry Clin Neurosci 259, 80–85 (2009). https://doi.org/10.1007/s00406-008-0838-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-008-0838-3

Keywords

Navigation